Несущая способность кирпичной кладки 250 мм. Расчет простенка на прочность с учетом выявленных дефектов. Нагруженность кирпичной кладки

Требуется определить расчетную несущую способность участка стены здания с жесткой конструктивной схемой*

Расчет несущей способности участка несущей стены здания с жесткой конструктивной схемой.

К участку стены прямоугольного сечения приложена расчетная про­дольная сила N = 165 кН (16,5 тс), от длительных нагрузокN g = 150 кН (15 тс), кратковременныхN st = 15 кН (1,5тс). Размер сечения - 0,40x1,00 м, высота этажа - 3 м, нижние и верхние опоры стены - шарнирные, не­подвижные. Стена запроектирована из четырехслойных блоков проектной марки по прочности М50, с применением строительного раствора проектной марки М50.

Требуется проверить несущую способность элемента стены в середине высоты этажа при возведении здания в летних условиях.

В соответствии с п. для несущих стен толщиной 0,40 м случайный эксцентриситет не следует учитывать. Расчет производим по формуле

N m g RA  ,

где N - расчетная продольная сила.

Пример расчета, приведенный в настоящем Приложении, выполнен по формулам, таблицам и пунктам СНиП П-22-81 * (приведены в квадратных скобках) и настоящим Рекомендациям.

Площадь сечения элемента

А = 0,40 ∙ 1,0 = 0,40м.

Расчетное сопротивление сжатию кладки R по табл.1 настоящих Ре­комендаций с учетом коэффициента условий работы с = 0,8, см. п. , равно

R = 9,2-0,8 = 7,36 кгс/см 2 (0,736МПа).

Пример расчета, приведенный в настоящем Приложении, выполнен по формулам, таблицам и пунктам СНиП П-22-81 * (приведены в квадратных скобках) и настоящим Рекомендациям.

Расчетная длина элемента согласно черт., п. равна

l 0 = Η = З м.

Гибкость элемента равна

.

Упругая характеристика кладки , принимаемая по данным «Реко­мендациям», равна

Коэффициент продольного изгиба определяем по табл.

Коэффициент, учитывающий влияние длительной нагрузки при тол­щине стены 40 см, принимаем m g = 1.

Коэффициент для кладки из четырехслойных блоков принимается по табл. равным 1,0.

Расчетная несущая способность участка стены N cc равна

N cc = mg m g R A  =1,0 ∙ 0,9125 ∙ 0,736 ∙ 10 3 ∙ 0,40 ∙ 1,0 = 268,6 кН (26,86 тс).

Расчетная продольная сила N меньшеN cc :

N = 165 кН < N cc = 268,6 кН.

Следовательно, стена удовлетворяет требованиям по несущей способ­ности.

II пример расчета сопротивления теплопередаче стен зданий из четырехслойных теплоэффективных блоков

Пример. Определить сопротивление теплопередаче стены толщиной 400 мм из четырехслойных теплоэффективных блоков. Внутренняя поверхность стены со стороны помещения облицовывается гипсокартонными листами.

Стена проектируется для помещений с нормальной влажностью и умеренного наружного климата, район строительства - г. Москва и Мос­ковская область.

При расчете принимаем кладку из четырехслойных блоков со слоями, имеющими характеристики:

Внутренний слой - керамзитобетон толщиной 150 мм, плотностью 1800 кг/м 3 -= 0,92 Вт/м ∙ 0 С;

Наружный слой - поризованный керамзитобетон толщиной 80 мм, плотностью 1800 кг/м 3 -= 0,92 Вт/м ∙ 0 С;

Теплоизоляционный слой - полистирол толщиной 170 мм, - 0,05 Вт/м ∙ 0 С;

Сухая штукатурка из гипсовых обшивочных листов толщиной 12 мм - = 0,21 Вт/м ∙ 0 С.

Приведенное сопротивление теплопередаче наружной стены рассчиты­вается по основному конструктивному элементу, наиболее повторяемому в здании. Конструкция стены здания с основным конструктивным элементом приведена на рис.2, 3. Требуемое приведенное сопротивление теплопередаче стены определяется по СНиП 23-02-2003 «Тепловая защита зданий», исходя из условий энергосбережения по таблице 1б* для жилых зданий.

Для условий г. Москвы и Московской области требуемое сопротивле­ние теплопередаче стен зданий (II этап)

ГСОП = (20 + 3,6)∙213 = 5027 град. сут.

Общее сопротивление теплопередаче R o принятой конструкции стены определяется по формуле

,(1)

где и - коэффициенты теплоотдаче внутренней и наружной по­верхности стены,

принимаемые по СНиП 23-2-2003- 8,7 Вт/м 2 ∙ 0 С и 23 Вт/м 2 ∙ 0 С

соответственно;

R 1 ,R 2 ...R n - термические сопротивления отдельных слоев конструкций блока

n - толщина слоя (м);

n - коэффициент теплопроводности слоя (Вт/м 2 ∙ 0 С)

= 3,16 м 2 ∙ 0 С/Вт.

Определяем приведенное сопротивление теплопередаче стены R o без штукатурного внутреннего слоя.

R o =
= 0,115 + 0,163 + 3,4 + 0,087 + 0,043 = 3,808 м 2 ∙ 0 С/Вт.

При необходимости применения со стороны помещения внутреннего штукатурного слоя из гипсокартонных листов сопротивления теплопередаче стены увеличивается на

R шт. =
= 0,571 м 2 ∙ 0 С/Вт.

Термическое сопротивление стены составит

R o = 3,808 + 0,571 = 4,379 м 2 ∙ 0 С/Вт.

Таким образом, конструкция наружной стены из четырехслойных теплоэффективных блоков толщиной 400 мм с внутренним штукатурным слоем из гипсокартонных листов толщиной 12 мм общей толщиной 412 мм имеет приведенное сопротивление теплопередаче равное 4,38 м 2 ∙ 0 С/Вт удовлетво­ряет требованиям, предъявляемым к теплозащитным качествам наружных ограждающих конструкций зданий в климатических условиях г. Москвы и Московской области.

Необходимость расчета кирпичной кладки при строительстве частного дома очевидна любому застройщику. При строительстве жилых зданий используется клинкерный и красный кирпич, отделочный кирпич применяется для создания привлекательного внешнего вида наружной поверхности стен. Каждая марка кирпича имеет свои специфические параметры и свойства, но различие в размерах между разными марками минимально.

Максимальное количество материала можно рассчитать, определив общий объем стен и разделив его на объем одного кирпича.

Клинкерный кирпич используется для строительства элитных домов. У него большой удельный вес, привлекательный внешний вид, высокая прочность. Ограниченное использование вызвано высокой стоимостью материала.

Наиболее популярным и востребованным материалом является красный кирпич. Он обладает достаточной прочностью при сравнительно небольшом удельном весе, легко обрабатывается, мало подвержен воздействию окружающей среды. Недостатки — неряшливые поверхности с большой шероховатостью, способность впитывать воду при высокой влажности. В нормальных условиях эксплуатации эта способность не проявляется.

Для укладки кирпичей существует два метода:

  • тычковый;
  • ложковый.

При укладке тычковым методом кирпич укладывается поперек стены. Толщина стены должна быть не менее 250 мм. Наружная поверхность стены будет состоять из торцевых поверхностей материала.

При ложковом методе кирпич укладывается вдоль. Снаружи оказывается боковая поверхность. Этим способом можно выкладывать стены в полкирпича — толщиной 120 мм.

Что нужно знать для расчета

Максимальное количество материала можно рассчитать, определив общий объем стен и разделив его на объем одного кирпича. Полученный результат будет приблизительным и завышенным. Для более точного расчета необходимо учесть следующие факторы:

  • размер кладочного шва;
  • точные размеры материала;
  • толщина всех стен.

Производители довольно часто по разным причинам не выдерживают стандартные размеры изделий. Красный кладочный кирпич по ГОСТу должен иметь размеры 250х120х65 мм. Во избежание ошибок, лишних материальных затрат желательно уточнить у поставщиков размеры имеющегося в наличии кирпича.

Оптимальная толщина наружных стен для большинства регионов равна 500 мм, или в 2 кирпича. Такой размер обеспечивает высокую прочность здания, хорошую теплоизоляцию. Недостатком является большой вес строения и, как следствие, давление на фундамент и нижние слои кладки.

Размер кладочного шва в первую очередь будет зависеть от качества раствора.

Если для приготовления смеси использовать крупнозернистый песок, ширина шва увеличится, с мелкозернистым — шов можно сделать тоньше. Оптимальная толщина кладочных швов равна 5-6 мм. При необходимости допускается выполнять швы толщиной от 3 до 10 мм. В зависимости от размера швов и способа укладки кирпича можно сэкономить некоторое его количество.

Для примера возьмем толщину шва 6 мм и ложковый способ укладки кирпичных стен. При толщине стены 0,5 м нужно уложить в ширину 4 кирпича.

Суммарная ширина зазоров составит 24 мм. Укладка 10 рядов по 4 кирпича даст суммарную толщину всех зазоров в 240 мм, что почти равно длине стандартного изделия. Общая площадь кладки при этом будет примерно 1,25 м 2 . Если кирпичи уложены вплотную, без зазоров, в 1 м 2 помещается 240 шт. С учетом зазоров расход материала составит примерно 236 штук.

Вернуться к оглавлению

Методика расчета несущих стен

При планировании наружных размеров здания желательно выбирать значения кратные 5. С такими цифрами проще выполнять расчет, затем выполнять в реальности. При планировании строительства 2 этажей следует просчитывать количество материала поэтапно, для каждого этажа.

Вначале выполняется расчет наружных стен на первом этаже. Для примера можно взять здание с размерами:

  • длина = 15 м;
  • ширина = 10 м;
  • высота = 3 м;
  • толщина стен в 2 кирпича.

По этим размерам нужно определить периметр строения:

(15 + 10) х 2 = 50

3 х 50 = 150 м 2

Рассчитав общую площадь, можно определить максимальное количество кирпича для строительства стены. Для этого нужно умножить определенное ранее количество кирпичей для 1 м 2 на общую площадь:

236 х 150 = 35 400

Результат неокончательный, стены должны иметь проемы для установки дверей и окон. Количество входных дверей может варьироваться. У небольших частных домов обычно одна дверь. Для зданий больших размеров желательно планировать два входа. Количество окон, их размеры и место расположения определяются внутренней планировкой здания.

В качестве примера можно взять 3 оконных проема на 10-метровую стену, по 4 на 15-метровые стены. Одну из стен желательно выполнять глухой, без проемов. Объем дверных проемов можно определить по стандартным размерам. При отличии размеров от стандартных объем можно рассчитать по габаритным размерам, добавив к ним ширину монтажного зазора. Для расчета следует воспользоваться формулой:

2 х (А х В) х 236 = С

где: А — ширина дверного проема, В — высота, С — объем в количестве кирпичей.

Подставив стандартные значения, получим:

2 х (2 х 0,9) х 236 = 849 шт.

Объем оконных проемов рассчитывается аналогично. При размерах окон 1,4 х 2,05 м объем составит 7450 штук. Определить количество кирпичей на температурный зазор просто: нужно длину периметра умножить на 4. В результате получится 200 штук.

35400 — (200 + 7450 + 849) = 26 901.

Приобретать необходимое количество следует с небольшим запасом, потому что во время работы возможны ошибки и прочие непредвиденные ситуации.

Рисунок 1 . Расчетная схема для кирпичных колонн проектируемого здания.

При этом возникает естественный вопрос: какое минимальное сечение колонн обеспечит требуемую прочность и устойчивость? Конечно же, идея выложить колонны из глиняного кирпича, а тем более стены дома, является далеко не новой и все возможные аспекты расчетов кирпичных стен, простенков, столбов, которые есть суть колонны, достаточно подробно изложены в СНиП II-22-81 (1995) "Каменные и армокаменные конструкции". Именно этим нормативным документом и следует руководствоваться при расчетах. Приводимый ниже расчет, не более, чем пример использования указанного СНиПа.

Чтобы определить прочность и устойчивость колонн, нужно иметь достаточно много исходных данных, как то: марка кирпича по прочности, площадь опирания ригелей на колонны, нагрузка на колонны, площадь сечения колонны, а если на этапе проектирования ничего из этого не известно, то можно поступить следующим образом:

Пример расчета кирпичной колонны на устойчивость при центральном сжатии

Проектируется:

Терраса размерами 5х8 м. Три колонны (одна посредине и две по краям) из лицевого пустотелого кирпича сечением 0.25х0.25 м. Расстояние между осями колонн 4 м. Марка кирпича по прочности М75.

Расчетные предпосылки:

.

При такой расчетной схеме максимальная нагрузка будет на среднюю нижнюю колонну. Именно ее и следует рассчитывать на прочность. Нагрузка на колонну зависит от множества факторов, в частности от района строительства. Например, Санкт-Петербурге составляет 180 кг/м 2 , а в Ростове-на-Дону - 80 кг/м 2 . С учетом веса самой кровли 50-75 кг/м 2 нагрузка на колонну от кровли для Пушкина Ленинградской области может составить:

N с кровли = (180·1.25 + 75)·5·8/4 = 3000 кг или 3 тонны

Так как действующие нагрузки от материала перекрытия и от людей, восседающих на террасе, мебели и др. пока не известны, но железобетонная плита точно не планируется, а предполагается, что перекрытие будет деревянным, из отдельно лежащих обрезных досок, то для расчетов нагрузки от террасы можно принять равномерно распределенную нагрузку 600 кг/м 2 , тогда сосредоточенная сила от террасы, действующая на центральную колонну, составит:

N с террасы = 600·5·8/4 = 6000 кг или 6 тонн

Собственный вес колонн длиной 3 м будет составлять:

N с колонны = 1500·3·0.38·0.38 = 649.8 кг или 0.65 тонн

Таким образом суммарная нагрузка на среднюю нижнюю колонну в сечении колонны возле фундамента составит:

N с об = 3000 + 6000 + 2·650 = 10300 кг или 10.3 тонн

Однако в данном случае можно учесть, что существует не очень большая вероятность того, что временная нагрузка от снега, максимальная в зимнее время, и временная нагрузка на перекрытие, максимальная в летнее время, будут приложены одновременно. Т.е. сумму этих нагрузок можно умножить на коэффициент вероятности 0.9, тогда:

N с об = (3000 + 6000)·0.9 + 2·650 = 9400 кг или 9.4 тонн

Расчетная нагрузка на крайние колонны будет почти в два раза меньше:

N кр = 1500 + 3000 + 1300 = 5800 кг или 5.8 тонн

2. Определение прочности кирпичной кладки.

Марка кирпича М75 означает, что кирпич должен выдерживать нагрузку 75 кгс/см 2 , однако прочность кирпича и прочность кирпичной кладки - разные вещи. Понять это поможет следующая таблица:

Таблица 1 . Расчетные сопротивления сжатию для кирпичной кладки (согласно СНиП II-22-81 (1995))

Но и это еще не все. Все тот же СНиП II-22-81 (1995) п.3.11 а) рекомендует при площади столбов и простенков менее 0.3 м 2 умножать значение расчетного сопротивления на коэффициент условий работы γ с =0.8 . А так как площадь сечения нашей колонны составляет 0.25х0.25 = 0.0625 м 2 , то придется этой рекомендацией воспользоваться. Как видим, для кирпича марки М75 даже при использовании кладочного раствора М100 прочность кладки не будет превышать 15 кгс/см 2 . В итоге расчетное сопротивление для нашей колонны составит 15·0.8 = 12 кг/см 2 , тогда максимальное сжимающее напряжение составит:

10300/625 = 16.48 кг/см 2 > R = 12 кгс/см 2

Таким образом для обеспечения необходимой прочности колонны нужно или использовать кирпич большей прочности, например М150 (расчетное сопротивление сжатию при марке раствора М100 составит 22·0.8 = 17.6 кг/см 2) или увеличивать сечение колонны или использовать поперечное армирование кладки. Пока остановимся на использовании более прочного лицевого кирпича.

3. Определение устойчивости кирпичной колонны.

Прочность кирпичной кладки и устойчивость кирпичной колонны - это тоже разные вещи и все тот же СНиП II-22-81 (1995) рекомендует определять устойчивость кирпичной колонны по следующей формуле :

N ≤ m g φRF (1.1)

где m g - коэффициент, учитывающий влияние длительной нагрузки. В данном случае нам, условно говоря, повезло, так как при высоте сечения h ≈ 30 см, значение данного коэффициента можно принимать равным 1.

Примечание : Вообще-то с коэффициентом m g все не так просто, подробности можно посмотреть в комментариях к статье.

φ - коэффициент продольного изгиба, зависящий от гибкости колонны λ . Чтобы определить этот коэффициент, нужно знать расчетную длину колонны l 0 , а она далеко не всегда совпадает с высотой колонны. Тонкости определения расчетной длины конструкции изложены отдельно , здесь лишь отметим, что согласно СНиП II-22-81 (1995) п.4.3: "Расчетные высоты стен и столбов l 0 при определении коэффициентов продольного изгиба φ в зависимости от условий опирания их на горизонтальные опоры следует принимать:

а) при неподвижных шарнирных опорах l 0 = Н ;

б) при упругой верхней опоре и жестком защемлении в нижней опоре: для однопролетных зданий l 0 = 1,5H , для многопролетных зданий l 0 = 1,25H ;

в) для свободно стоящих конструкций l 0 = 2Н ;

г) для конструкций с частично защемленными опорными сечениями — с учетом фактической степени защемления, но не менее l 0 = 0,8Н , где Н — расстояние между перекрытиями или другими горизонтальными опорами, при железобетонных горизонтальных опорах расстояние между ними в свету."

На первый взгляд, нашу расчетную схему можно рассматривать, как удовлетворяющую условиям пункта б). т.е можно принимать l 0 = 1.25H = 1.25·3 = 3.75 метра или 375 см . Однако уверенно использовать это значение мы можем лишь в том случае, когда нижняя опора действительно жесткая. Если кирпичная колонна будет выкладываться на слой гидроизоляции из рубероида, уложенный на фундамент, то такую опору скорее следует рассматривать как шарнирную, а не жестко защемленную. И в этом случае наша конструкция в плоскости, параллельной плоскости стены, является геометрически изменяемой , так как конструкция перекрытия (отдельно лежащие доски) не обеспечивает достаточную жесткость в указанной плоскости. Из подобной ситуации возможны 4 выхода:

1. Применить принципиально другую конструктивную схему

например - металлические колонны, жестко заделанные в фундамент, к которым будут привариваться ригеля перекрытия, затем из эстетических соображений металлические колонны можно обложить лицевым кирпичом любой марки, так как всю нагрузку будет нести металл. В этом случае, правда нужно рассчитывать металлические колонны, но расчетную длину можно приниматьl 0 = 1.25H .

2. Сделать другое перекрытие ,

например из листовых материалов, что позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, в этом случае l 0 = H .

3. Сделать диафрагму жесткости

в плоскости, параллельной плоскости стены. Например по краям выложить не колонны, а скорее простенки. Это также позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, но в этом случае необходимо дополнительно рассчитывать диафрагму жесткости.

4. Не обращать внимания на вышеприведенные варианты и рассчитывать колонны, как отдельно стоящие с жесткой нижней опорой, т.е l 0 = 2Н

В конце концов древние греки ставили свои колонны (правда, не из кирпича) без каких-либо знаний о сопротивлении материалов, без использования металлических анкеров, да и столь тщательно выписанных строительных норм и правил в те времена не было, тем не менее некоторые колонны стоят и по сей день.

Теперь, зная расчетную длину колонны, можно определить коэффициент гибкости:

λ h = l 0 /h (1.2) или

λ i = l 0 /i (1.3)

где h - высота или ширина сечения колонны, а i - радиус инерции.

Определить радиус инерции в принципе не сложно, нужно разделить момент инерции сечения на площадь сечения, а затем из результата извлечь квадратный корень, однако в данном случае в этом нет большой необходимости. Таким образом λ h = 2·300/25 = 24 .

Теперь, зная значение коэффициента гибкости, можно наконец-то определить коэффициент продольного изгиба по таблице:

Таблица 2 . Коэффициенты продольного изгиба для каменных и армокаменных конструкций (согласно СНиП II-22-81 (1995))

При этом упругая характеристика кладки α определяется по таблице:

Таблица 3 . Упругая характеристика кладки α (согласно СНиП II-22-81 (1995))

В итоге значение коэффициента продольного изгиба составит около 0.6 (при значении упругой характеристики α = 1200, согласно п.6). Тогда предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1х0.6х0.8х22х625 = 6600 кг < N с об = 9400 кг

Это означает, что принятого сечения 25х25 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны недостаточно. Для увеличения устойчивости наиболее оптимальным будет увеличение сечения колонны. Например, если выкладывать колонну с пустотой внутри в полтора кирпича, размерами 0.38х0.38 м, то таким образом не только увеличится площадь сечения колонны до 0.13 м 2 или 1300 см 2 , но увеличится и радиус инерции колонны до i = 11.45 см . Тогда λ i = 600/11.45 = 52.4 , а значение коэффициента φ = 0.8 . В этом случае предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1х0.8х0.8х22х1300 = 18304 кг > N с об = 9400 кг

Это означает, что сечения 38х38 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны хватает с запасом и даже можно уменьшить марку кирпича. Например, при первоначально принятой марке М75 предельная нагрузка составит:

N р = m g φγ с RF = 1х0.8х0.8х12х1300 = 9984 кг > N с об = 9400 кг

Вроде бы все, но желательно учесть еще одну деталь. Фундамент в этом случае лучше делать ленточным (единым для всех трех колонн), а не столбчатым (отдельно для каждой колонны), в противном случае даже небольшие просадки фундамента приведут к дополнительным напряжениям в теле колонны и это может привести к разрушению. С учетом всего вышеизложенного наиболее оптимальным будет сечение колонн 0.51х0.51 м, да и с эстетической точки зрения такое сечение является оптимальным. Площадь сечения таких колонн составит 2601 см 2 .

Пример расчета кирпичной колонны на устойчивость при внецентренном сжатии

Крайние колонны в проектируемом доме не будут центрально сжатыми, так как на них будут опираться ригеля только с одной стороны. И даже если ригеля будут укладываться на всю колонну, то все равно из-за прогиба ригелей нагрузка от перекрытия и кровли будет передаваться крайним колоннам не по центру сечения колонны. В каком именно месте будет передаваться равнодействующая этой нагрузки, зависит от угла наклона ригелей на опорах, модулей упругости ригелей и колонн и ряда других факторов, которые подробно рассматриваются в статье "Расчет опорного участка балки на смятие ". Это смещение называется эксцентриситетом приложения нагрузки е о. В данном случае нас интересует наиболее неблагоприятное сочетание факторов, при котором нагрузка от перекрытия на колонны будет передаваться максимально близко к краю колонны. Это означает, что на колонны кроме самой нагрузки будет также действовать изгибающий момент, равный M = Ne о , и этот момент нужно учесть при расчетах. В общем случае проверку на устойчивость можно выполнять по следующей формуле:

N = φRF - MF/W (2.1)

где W - момент сопротивления сечения. В данном случае нагрузку для нижних крайних колонн от кровли можно условно считать центрально приложенной, а эксцентриситет будет создавать только нагрузка от перекрытия. При эксцентриситете 20 см

N р = φRF - MF/W = 1х0.8х0.8х12х2601 - 3000·20·2601 · 6/51 3 = 19975, 68 - 7058.82 = 12916.9 кг > N кр = 5800 кг

Таким образом даже при очень большом эксцентриситете приложения нагрузки у нас имеется более чем двукратный запас по прочности.

Примечание: СНиП II-22-81 (1995) "Каменные и армокаменные конструкции" рекомендует использовать другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же, поэтому методику расчета, рекомендуемую СНиПом здесь не привожу.

Кирпич - достаточно прочный строительный материал, особенно полнотелый, и при строительстве домов в 2-3 этажа стены из рядового керамического кирпича в дополнительных расчетах как правило не нуждаются. Тем не менее ситуации бывают разные, например, планируется двухэтажный дом с террасой на втором этаже. Металлические ригеля, на которые будут опираться также металлические балки перекрытия террасы, планируется опереть на кирпичные колонны из лицевого пустотелого кирпича высотой 3 метра, выше будут еще колонны высотой 3 м, на которые будет опираться кровля:

При этом возникает естественный вопрос: какое минимальное сечение колонн обеспечит требуемую прочность и устойчивость? Конечно же, идея выложить колонны из глиняного кирпича, а тем более стены дома, является далеко не новой и все возможные аспекты расчетов кирпичных стен, простенков, столбов, которые есть суть колонны, достаточно подробно изложены в СНиП II-22-81 (1995) "Каменные и армокаменные конструкции". Именно этим нормативным документом и следует руководствоваться при расчетах. Приводимый ниже расчет, не более, чем пример использования указанного СНиПа.

Чтобы определить прочность и устойчивость колонн, нужно иметь достаточно много исходных данных, как то: марка кирпича по прочности, площадь опирания ригелей на колонны, нагрузка на колонны, площадь сечения колонны, а если на этапе проектирования ничего из этого не известно, то можно поступить следующим образом:


при центральном сжатии

Проектируется: Терраса размерами 5х8 м. Три колонны (одна посредине и две по краям) из лицевого пустотелого кирпича сечением 0,25х0,25 м. Расстояние между осями колонн 4 м. Марка кирпича по прочности М75.

При такой расчетной схеме максимальная нагрузка будет на среднюю нижнюю колонну. Именно ее и следует рассчитывать на прочность. Нагрузка на колонну зависит от множества факторов, в частности от района строительства. Например, снеговая нагрузка на кровлю в Санкт-Петербурге составляет 180 кг/м², а в Ростове-на-Дону - 80 кг/м². С учетом веса самой кровли 50-75 кг/м² нагрузка на колонну от кровли для Пушкина Ленинградской области может составить:

N с кровли = (180·1,25 +75)·5·8/4 = 3000 кг или 3 тонны

Так как действующие нагрузки от материала перекрытия и от людей, восседающих на террасе, мебели и др. пока не известны, но железобетонная плита точно не планируется, а предполагается, что перекрытие будет деревянным, из отдельно лежащих обрезных досок, то для расчетов нагрузки от террасы можно принять равномерно распределенную нагрузку 600 кг/м², тогда сосредоточенная сила от террасы, действующая на центральную колонну, составит:

N с террасы = 600·5·8/4 = 6000 кг или 6 тонн

Собственный вес колонн длиной 3 м будет составлять:

N с колонны = 1500·3·0,38·0,38 = 649,8 кг или 0,65 тонн

Таким образом суммарная нагрузка на среднюю нижнюю колонну в сечении колонны возле фундамента составит:

N с об = 3000 + 6000 + 2·650 = 10300 кг или 10,3 тонн

Однако в данном случае можно учесть, что существует не очень большая вероятность того, что временная нагрузка от снега, максимальная в зимнее время, и временная нагрузка на перекрытие, максимальная в летнее время, будут приложены одновременно. Т.е. сумму этих нагрузок можно умножить на коэффициент вероятности 0,9, тогда:

N с об = (3000 + 6000)·0.9 + 2·650 = 9400 кг или 9,4 тонн

Расчетная нагрузка на крайние колонны будет почти в два раза меньше:

N кр = 1500 + 3000 + 1300 = 5800 кг или 5,8 тонн

2. Определение прочности кирпичной кладки.

Марка кирпича М75 означает, что кирпич должен выдерживать нагрузку 75 кгс/см², однако прочность кирпича и прочность кирпичной кладки - разные вещи. Понять это поможет следующая таблица:

Таблица 1 . Расчетные сопротивления сжатию для кирпичной кладки

Но и это еще не все. Все тот же СНиП II-22-81 (1995) п.3.11 а) рекомендует при площади столбов и простенков менее 0.3 м² умножать значение расчетного сопротивления на коэффициент условий работы γ с =0,8 . А так как площадь сечения нашей колонны составляет 0,25х0,25 = 0,0625 м², то придется этой рекомендацией воспользоваться. Как видим, для кирпича марки М75 даже при использовании кладочного раствора М100 прочность кладки не будет превышать 15 кгс/см². В итоге расчетное сопротивление для нашей колонны составит 15·0,8 = 12 кг/см², тогда максимальное сжимающее напряжение составит:

10300/625 = 16,48 кг/см² > R = 12 кгс/см²

Таким образом для обеспечения необходимой прочности колонны нужно или использовать кирпич большей прочности, например М150 (расчетное сопротивление сжатию при марке раствора М100 составит 22·0,8 = 17,6 кг/см²) или увеличивать сечение колонны или использовать поперечное армирование кладки. Пока остановимся на использовании более прочного лицевого кирпича.

3. Определение устойчивости кирпичной колонны.

Прочность кирпичной кладки и устойчивость кирпичной колонны - это тоже разные вещи и все тот же СНиП II-22-81 (1995) рекомендует определять устойчивость кирпичной колонны по следующей формуле :

N ≤ m g φRF (1.1)

m g - коэффициент, учитывающий влияние длительной нагрузки. В данном случае нам, условно говоря, повезло, так как при высоте сечения h ≤ 30 см, значение данного коэффициента можно принимать равным 1.

φ - коэффициент продольного изгиба, зависящий от гибкости колонны λ . Чтобы определить этот коэффициент, нужно знать расчетную длину колонны l o , а она далеко не всегда совпадает с высотой колонны. Тонкости определения расчетной длины конструкции здесь не изложены, лишь отметим, что согласно СНиП II-22-81 (1995) п.4.3: "Расчетные высоты стен и столбов l o при определении коэффициентов продольного изгиба φ в зависимости от условий опирания их на горизонтальные опоры следует принимать:

а) при неподвижных шарнирных опорах l o = Н ;

б) при упругой верхней опоре и жестком защемлении в нижней опоре: для однопролетных зданий l o = 1,5H , для многопролетных зданий l o = 1,25H ;

в) для свободно стоящих конструкций l o = 2Н ;

г) для конструкций с частично защемленными опорными сечениями — с учетом фактической степени защемления, но не менее l o = 0,8Н , где Н — расстояние между перекрытиями или другими горизонтальными опорами, при железобетонных горизонтальных опорах расстояние между ними в свету."

На первый взгляд, нашу расчетную схему можно рассматривать, как удовлетворяющую условиям пункта б). т.е можно принимать l o = 1,25H = 1,25·3 = 3,75 метра или 375 см . Однако уверенно использовать это значение мы можем лишь в том случае, когда нижняя опора действительно жесткая. Если кирпичная колонна будет выкладываться на слой гидроизоляции из рубероида, уложенный на фундамент, то такую опору скорее следует рассматривать как шарнирную, а не жестко защемленную. И в этом случае наша конструкция в плоскости, параллельной плоскости стены, является геометрически изменяемой, так как конструкция перекрытия (отдельно лежащие доски) не обеспечивает достаточную жесткость в указанной плоскости. Из подобной ситуации возможны 4 выхода:

1. Применить принципиально другую конструктивную схему , например - металлические колонны, жестко заделанные в фундамент, к которым будут привариваться ригеля перекрытия, затем из эстетических соображений металлические колонны можно обложить лицевым кирпичом любой марки, так как всю нагрузку будет нести металл. В этом случае, правда нужно рассчитывать металлические колонны, но расчетную длину можно принимать l o = 1,25H .

2. Сделать другое перекрытие , например из листовых материалов, что позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, в этом случае l o = H .

3. Сделать диафрагму жесткости в плоскости, параллельной плоскости стены. Например по краям выложить не колонны, а скорее простенки. Это также позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, но в этом случае необходимо дополнительно рассчитывать диафрагму жесткости.

4. Не обращать внимания на вышеприведенные варианты и рассчитывать колонны, как отдельно стоящие с жесткой нижней опорой, т.е l o = 2Н . В конце концов древние греки ставили свои колонны (правда, не из кирпича) без каких-либо знаний о сопротивлении материалов, без использования металлических анкеров, да и столь тщательно выписанных строительных норм и правил в те времена не было, тем не менее некоторые колонны стоят и по сей день.

Теперь, зная расчетную длину колонны, можно определить коэффициент гибкости:

λ h = l o / h (1.2) или

λ i = l o (1.3)

h - высота или ширина сечения колонны, а i - радиус инерции.

Определить радиус инерции в принципе не сложно, нужно разделить момент инерции сечения на площадь сечения, а затем из результата извлечь квадратный корень, однако в данном случае в этом нет большой необходимости. Таким образом λ h = 2·300/25 = 24 .

Теперь, зная значение коэффициента гибкости, можно наконец-то определить коэффициент продольного изгиба по таблице:

Таблица 2 . Коэффициенты продольного изгиба для каменных и армокаменных конструкций
(согласно СНиП II-22-81 (1995))

При этом упругая характеристика кладки α определяется по таблице:

Таблица 3 . Упругая характеристика кладки α (согласно СНиП II-22-81 (1995))

В итоге значение коэффициента продольного изгиба составит около 0,6 (при значении упругой характеристики α = 1200, согласно п.6). Тогда предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1·0,6·0,8·22·625 = 6600 кг < N с об = 9400 кг

Это означает, что принятого сечения 25х25 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны недостаточно. Для увеличения устойчивости наиболее оптимальным будет увеличение сечения колонны. Например, если выкладывать колонну с пустотой внутри в полтора кирпича, размерами 0,38х0,38 м, то таким образом не только увеличится площадь сечения колонны до 0,13 м² или 1300 см², но увеличится и радиус инерции колонны до i = 11,45 см . Тогда λ i = 600/11,45 = 52,4 , а значение коэффициента φ = 0,8 . В этом случае предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1·0,8·0,8·22·1300 = 18304 кг > N с об = 9400 кг

Это означает, что сечения 38х38 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны хватает с запасом и даже можно уменьшить марку кирпича. Например, при первоначально принятой марке М75 предельная нагрузка составит:

N р = m g φγ с RF = 1·0,8·0,8·12·1300 = 9984 кг > N с об = 9400 кг

Вроде бы все, но желательно учесть еще одну деталь. Фундамент в этом случае лучше делать ленточным (единым для всех трех колонн), а не столбчатым (отдельно для каждой колонны), в противном случае даже небольшие просадки фундамента приведут к дополнительным напряжениям в теле колонны и это может привести к разрушению. С учетом всего вышеизложенного наиболее оптимальным будет сечение колонн 0,51х0,51 м, да и с эстетической точки зрения такое сечение является оптимальным. Площадь сечения таких колонн составит 2601 см².

Пример расчета кирпичной колонны на устойчивость
при внецентренном сжатии

Крайние колонны в проектируемом доме не будут центрально сжатыми, так как на них будут опираться ригеля только с одной стороны. И даже если ригеля будут укладываться на всю колонну, то все равно из-за прогиба ригелей нагрузка от перекрытия и кровли будет передаваться крайним колоннам не по центру сечения колонны. В каком именно месте будет передаваться равнодействующая этой нагрузки, зависит от угла наклона ригелей на опорах, модулей упругости ригелей и колонн и ряда других факторов. Это смещение называется эксцентриситетом приложения нагрузки е о. В данном случае нас интересует наиболее неблагоприятное сочетание факторов, при котором нагрузка от перекрытия на колонны будет передаваться максимально близко к краю колонны. Это означает, что на колонны кроме самой нагрузки будет также действовать изгибающий момент, равный M = Ne о , и этот момент нужно учесть при расчетах. В общем случае проверку на устойчивость можно выполнять по следующей формуле:

N = φRF - MF/W (2.1)

W - момент сопротивления сечения. В данном случае нагрузку для нижних крайних колонн от кровли можно условно считать центрально приложенной, а эксцентриситет будет создавать только нагрузка от перекрытия. При эксцентриситете 20 см

N р = φRF - MF/W = 1·0,8·0,8·12·2601 - 3000·20·2601 · 6/51 3 = 19975,68 - 7058,82 = 12916,9 кг > N кр = 5800 кг

Таким образом даже при очень большом эксцентриситете приложения нагрузки у нас имеется более чем двукратный запас по прочности.

Примечание: СНиП II-22-81 (1995) "Каменные и армокаменные конструкции" рекомендует использовать другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же, поэтому методика расчета, рекомендуемая СНиПом здесь не приводится.

Чтобы выполнить расчет стены на устойчивость, нужно в первую очередь разобраться с их классификацией (см. СНиП II -22-81 «Каменные и армокаменные конструкции», а также пособие к СНиП) и понять, какие бывают виды стен:

1. Несущие стены - это стены, на которые опираются плиты перекрытия, конструкции крыши и т.п. Толщина этих стен должна быть не менее 250 мм (для кирпичной кладки). Это самые ответственные стены в доме. Их нужно рассчитывать на прочность и устойчивость.

2. Самонесущие стены - это стены, на которые ничто не опирается, но на них действует нагрузка от всех вышележащих этажей. По сути, в трехэтажном доме, например, такая стена будет высотой в три этажа; нагрузка на нее только от собственного веса кладки значительная, но при этом очень важен еще вопрос устойчивости такой стены - чем стена выше, тем больше риск ее деформаций.

3. Ненесущие стены - это наружные стены, которые опираются на перекрытие (или на другие конструктивные элементы) и нагрузка на них приходится с высоты этажа только от собственного веса стены. Высота ненесущих стен должна быть не более 6 метров, иначе они переходят в категорию самонесущих.

4. Перегородки - это внутренние стены высотой менее 6 метров, воспринимающие только нагрузку от собственного веса.

Разберемся с вопросом устойчивоcти стен.

Первый вопрос, возникающий у «непосвященного» человека: ну куда может деться стена? Найдем ответ с помощью аналогии. Возьмем книгу в твердом переплете и поставим ее на ребро. Чем больше формат книги, тем меньше будет ее устойчивость; с другой стороны, чем книга будет толще, тем лучше она будет стоять на ребре. Со стенами та же ситуация. Устойчивость стены зависит от высоты и толщины.

Теперь возьмем наихудший вариант: тонкую тетрадь большого формата и поставим на ребро - она не просто потеряет устойчивость, но еще и изогнется. Так и стена, если не будут соблюдены условия по соотношению толщины и высоты, начнет выгибаться из плоскости, а со временем - трещать и разрушаться.

Что нужно, чтобы избежать такого явления? Нужно изучить п.п. 6.16...6.20 СНиП II -22-81.

Рассмотрим вопросы определения устойчивости стен на примерах.

Пример 1. Дана перегородка из газобетона марки М25 на растворе марки М4 высотой 3,5 м, толщиной 200 мм, шириной 6 м, не связанная с перекрытием. В перегородке дверной проем 1х2,1 м. Необходимо определить устойчивость перегородки.

Из таблицы 26 (п. 2) определяем группу кладки - III . Из таблиц ы 28 находим? = 14. Т.к. перегородка не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 9,8.

k 1 = 1,8 - для перегородки, не несущей нагрузки при ее толщине 10 см, и k 1 = 1,2 - для перегородки толщиной 25 см. По интерполяции находим для нашей перегородки толщиной 20 см k 1 = 1,4;

k 3 = 0,9 - для перегородки с проемами;

значит k = k 1 k 3 = 1,4*0,9 = 1,26.

Окончательно β = 1,26*9,8 = 12.3.

Найдем отношение высоты перегородки к толщине: H /h = 3,5/0,2 = 17,5 > 12.3 - условие не выполняется, перегородку такой толщины при заданной геометрии делать нельзя.

Каким способом можно решить эту проблему? Попробуем увеличить марку раствора до М10, тогда группа кладки станет II , соответственно β = 17, а с учетом коэффициентов β = 1,26*17*70% = 15 < 17,5 - этого оказалось недостаточно. Увеличим марку газобетона до М50, тогда группа кладки станет I , соответственно β = 20, а с учетом коэффициентов β = 1,26*20*70% = 17.6 > 17,5 - условие выполняется. Также можно было не увеличивая марку газобетона, заложить в перегородке конструктивное армирование согласно п. 6.19. Тогда β увеличивается на 20% и устойчивость стены обеспечена.

Пример 2. Дана наружная ненесущая стена из облегченной кладки из кирпича марки М50 на растворе марки М25. Высота стены 3 м, толщина 0,38 м, длина стены 6 м. Стена с двумя окнами размером 1,2х1,2 м. Необходимо определить устойчивость стены.

Из таблицы 26 (п. 7) определяем группу кладки - I . Из таблиц ы 28 находим β = 22. Т.к. стена не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 15,4.

Находим коэффициенты k из таблиц ы 29:

k 1 = 1,2 - для стены, не несущей нагрузки при ее толщине 38 см;

k 2 = √А n /A b = √1,37/2,28 = 0,78 - для стены с проемами, где A b = 0,38*6 = 2,28 м 2 - площадь горизонтального сечения стены с учетом окон, А n = 0,38*(6-1,2*2) = 1,37 м 2 ;

значит k = k 1 k 2 = 1,2*0,78 = 0,94.

Окончательно β = 0,94*15,4 = 14,5.

Найдем отношение высоты перегородки к толщине: H /h = 3/0,38 = 7,89 < 14,5 - условие выполняется.

Необходимо также проверить условие, изложенное в п. 6.19:

Н + L = 3 + 6 = 9 м < 3kβh = 3*0,94*14,5*0,38 = 15.5 м - условие выполняется, устойчивость стены обеспечена.

Внимание! Для удобства ответов на ваши вопросы создан новый раздел "БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ" .

class="eliadunit">

Комментарии

« 3 4 5 6 7 8

0 #212 Алексей 21.02.2018 07:08

Цитирую Иринa:

профили арматуру не заменят


Цитирую Иринa:

насчет фундамента: допустимы пустоты в теле бетона, но не снизу, чтобы не уменьшать площадь опирания, которая отвечает за несущую способность. То есть снизу должен быть тонкий слой армированного бетона.
А какой фундамент - лента или плита? Какие грунты?

Груны пока не известны, вероятнее всего будет чистое поле суглинки всякие, изначально думал плиту, но низковато выйдет, хочется по-выше, а ещё же придётся верхний плодородный слой снимать, поэтому склоняюсь к ребристому или даже коробчатому фундаменту. Несущей способности грунта много мне не надо - дом всё-таки решили в 1 этаж, да и керамзитобетон не очень тяжёлый, промерзание там не более 20 см (хотя по старым советским нормативам 80).

Думаю снять верхний слой 20-30 см, выложить геотекстиль, засыпать песочком речным и разровнять с уплотнением. Затем легкая подготовительная стяжка - для выравнивая (в неё вроде бы даже арматуру не делают, хотя не уверен), поверх гидроизоляция праймером
а дальше вот уже диллема - даже если связать каркасы арматуры ширина 150-200мм х 400-600мм высоты и уложить их с шагом в метр, то надо ещё пустоты чем-то сформировать между этими каркасами и в идеале эти пустоты должны оказаться поверх арматуры (да ещё и с некоторым расстоянием от подготовки, но при этом сверху их тоже надо будет проармировать тонким слоем под 60-100мм стяжку) - думаю ППС плиты замонолитить в качестве пустот - теоретически можно будет такое залить в 1 заход с вибрированием.

Т.е. как бы с виду плита 400-600мм с мощным армированием каждые 1000-1200мм объемная структура единая и легким в остальных местах, при этом внутри примерно 50-70% объёма будет пенопласт (в не нагруженных местах) - т.е. по расходу бетона и арматуры - вполне сравнимо с плитой 200мм, но + куча относительно дешового пенопласта и работы больше.

Если как-то бы ещё заменить пенопласт на простой грунт/песок - будет ещё лучше, но тогда вместо легкой подготовки разумнее делать нечто более серьёзное с армированием и выносом арматуры в балки - в общем тут не хватает мне и теории и практического опыта.

0 #214 Иринa 22.02.2018 16:21

Цитата:

жаль, вообще просто пишут что в легких бетонах (керамзитобетон) плохая связь с арматурой - как с этим бороться? я так понимаю чем прочнее бетон и чем больше площадь поверхности арматуры - тем лучше будет связь, т.е. надо керамзитобетон с добавлением песка (а не только керамзит и цемент) и арматуру тонкую, но чаще

зачем с этим бороться? нужно просто учитывать в расчете и при конструировании. Понимаете, керамзитобетон - достаточно хороший стеновой материал со своим списком достоинств и недостатков. Как и любые другие материалы. Вот если бы вы захотели использовать его для монолитного перекрытия, я бы вас отговаривала, потому что
Цитата:

 
Статьи по теме:
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з
Рыба на решетке - самое вкусное и ароматное блюдо
Особенность приготовления рыбы на мангале состоит в том, что независимо от того, как вы будете жарить рыбу — целиком или кусочками, кожу снимать не следует. Тушку рыбы нужно разделать очень аккуратно — старайтесь разрезать ее таким образом, что голова и х