Правила округления чисел до целого. Округление числа в Excel

Если отображение ненужных разрядов вызывает появление знаков ######, или если микроскопическая точность не нужна, измените формат ячеек таким образом, чтобы отображались только необходимые десятичные разряды.

Или если вы хотите округлить число до ближайшего крупного разряда, например, тысячной, сотой, десятой или единицы, используйте функцию в формуле.

С помощью кнопки

    Выделите ячейки, которые нужно отформатировать.

    На вкладке Главная выберите команду Увеличить разрядность или Уменьшить разрядность , чтобы отобразить больше или меньше цифр после запятой.

С помощью встроенного числового формата

    На вкладке Главная в группе Число щелкните стрелку рядом со списком числовых форматов и выберите пункт Другие числовые форматы .

    В поле Число десятичных знаков введите число знаков после запятой, которые вы хотите отображать.

С помощью функции в формуле

Округлите число до необходимого количества цифр с помощью функции ОКРУГЛ . Эта функция имеет только два аргумента (аргументы - это части данных, необходимые для выполнения формулы).

    Первый аргумент - это число, которое необходимо округлить. Он может быть ссылкой на ячейку или числом.

    Второй аргумент - это количество цифр, до которого необходимо округлить число.

Предположим, что ячейка A1 содержит число 823,7825 . Вот как можно округлить его.

    Чтобы округлить до ближайшей тысяч и

    • Введите =ОКРУГЛ(A1;-3) , что равно 100 0

      Число 823,7825 ближе к 1000, чем к 0 (0 кратно 1000)

      В этом случае используется отрицательное число, поскольку округление должно состоятся влево от запятой. Такое же число применяется в следующих двух формулах, которые округляют до сотен и десятков.

    Чтобы округлить до ближайших сотен

    • Введите =ОКРУГЛ(A1;-2) , что равно 800

      Число 800 ближе к 823,7825, чем к 900. Наверное, теперь вам все понятно.

    Чтобы округлить до ближайших десятков

    • Введите =ОКРУГЛ(A1;-1) , что равно 820

    Чтобы округлить до ближайших единиц

    • Введите =ОКРУГЛ(A1;0) , что равно 824

      Используйте ноль для округления числа до ближайшей единицы.

    Чтобы округлить до ближайших десятых

    • Введите =ОКРУГЛ(A1;1) , что равно 823,8

      В этом случает для округления числа до необходимого количества разрядов используйте положительное число. То же самое касается двух следующих формул, которые округляют до сотых и тысячных.

    Чтобы округлить до ближайших сотых

    • Введите =ОКРУГЛ(A1;2) , что равно 823,78

    Чтобы округлить до ближайших тысячных

    • Введите =ОКРУГЛ(A1;3) , что равно 823,783

Округлите число в большую сторону с помощью функции ОКРУГЛВВЕРХ . Она работает точно так же, как функция ОКРУГЛ, за исключением того, что она всегда округляет число в большую сторону. Например, если необходимо округлить число 3,2 до ноля разрядов:

    =ОКРУГЛВВЕРХ(3,2;0) , что равно 4

Округлите число вниз с помощью функции ОКРУГЛВНИЗ . Она работает точно так же, как функция ОКРУГЛ, за исключением того, что она всегда округляет число в меньшую сторону. Например, необходимо округлить число 3,14159 до трех разрядов:

    =ОКРУГЛВНИЗ(3,14159;3) , что равно 3,141

Округление чисел - простейшая математическая операция. Чтобы уметь правильно округлять числа, необходимо знать три правила.

Правило 1

Когда мы округляем число до какого-то разряда, мы должны избавиться от всех цифр справа от этого разряда.

Например, нам нужно округлить число 7531 до сотен. В этом числе пять сотен. Справа от этого разряда стоят цифры 3 и 1. Превращаем их в нули и получаем число 7500. То есть, округлив число 7531 до сотен, мы получили 7500.

При округлении дробных чисел все происходит так же, только лишние разряды можно просто отбросить. Допустим, нам нужно округлить число 12,325 до десятых. Для этого после запятой мы должны оставить одну цифру - 3, а все цифры, стоящие справа, отбрасываем. Результат округления числа 12,325 до десятых - 12,3.

Правило 2

Если справа от оставляемой цифры отбрасываемая цифра равна 0, 1, 2, 3 или 4, то цифра, которую мы оставляем, не меняется.

Это правило сработало в двух предыдущих примерах.

Так, при округлении числа 7531 до сотен самой близкой к оставляемой цифре из отбрасываемых была тройка. Поэтому цифра, которую мы оставили, - 5 - не изменилась. Результатом округления стало число 7500.

Точно так же при округлении числа 12,325 до десятых цифрой, которую мы отбросили после тройки, была двойка. Поэтому самая правая из оставленных цифр (тройка) при округлении не изменилась. Получилось 12,3.

Правило 3

Если же самая левая из отбрасываемых цифр равна 5, 6, 7, 8 или 9, то разряд, до которого мы округляем, увеличивается на единицу.

Например, нужно округлить число 156 до десятков. В этом числе 5 десятков. В разряде единиц, от которого мы собираемся избавиться, стоит цифра 6. Значит, разряд десятков нам следует увеличить на единицу. Поэтому при округлении числа 156 до десятков мы получим 160.

Рассмотрим пример с дробным числом. Например, мы собираемся округлить 0,238 до сотых. По правилу 1 мы должны отбросить восьмёрку, которая стоит справа от разряда сотых. А по правилу 3 нам придётся увеличить тройку в разряде сотых на один. В итоге, округлив число 0,238 до сотых, мы получим 0,24.

Настоящий стандарт СЭВ устанавливает правила записи и округления чисел, выраженных в десятичной системе счисления.

Правила записи и округления чисел, установленные в настоящем стандарте СЭВ, предназначены для применения в нормативно-технической, конструкторской и технологической документации.

Настоящий стандарт СЭВ не распространяется на специальные правила округления, установленные в других стандартах СЭВ.

1. ПРАВИЛА ЗАПИСИ ЧИСЕЛ

1.1. Значащие цифры данного числа - это все цифры от первой слева, не равной нулю, до последней записанной цифры справа. При этом нули, следующие из множителя 10 n , не учитываются.

1. Число 12,0

имеет три значащие цифры;

2. Число 30

имеет две значащие цифры;

3. Число 120·10 3

имеет три значащие цифры;

4. Число 0,514·10

имеет три значащие цифры;

5. Число 0,0056

имеет две значащие цифры.

1.2. Когда необходимо указать, что число является точным, после числа должно быть указано слово «точно» или же последняя значащая цифра печатается жирным шрифтом

Пример. В печатном тексте:

1 кВт·ч = 3 600 000 Дж (точно), или = 3600000 Дж

1.3. Следует различать записи приближенных чисел по количеству значащих цифр.

Примеры:

1. Следует различать числа 2,4 и 2,40. Запись 2,4 означает, что верны только цифры целых и десятых; истинное значение числа может быть например 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли числа; истинное число может быть 2,403 и 2,398, но не 2,421 и не 2,382.

2. Запись 382 означает, что все цифры верны; если за последнюю цифру ручаться нельзя, то число должно быть записано 3,8·10 2 .

3. Если в числе 4720 верны лишь две первые цифры оно должно быть записано 47·10 2 или 4,7·10 3 .

1.4. Число, для которого указывается допускаемое отклонение, должно иметь последнюю значащую цифру того же разряда как и последняя значащая цифра отклонения.

Примеры:

1.5. Числовые значения величины и ее погрешности (отклонения) целесообразно записывать с указанием одной и той же единицы физических величин.

Пример. 80,555±0,002 кг

1.6. Интервалы между числовыми значениями величин следует записывать:

От 60 до 100 или от 60 до 100

Свыше 100 до 120 или свыше 100 до 120

Свыше 120 до 150 или свыше 120 до 150.

1.7. Числовые значения величин должны указываться в стандартах с одинаковым числомразрядов, которое необходимо для обеспечения требуемых эксплуатационных свойств и качества продукции. Запись числовых значений величин до первого, второго, третьего и т. д. десятичного знака для различных типоразмеров, видов марок продукции одного названия, как правило, должна быть одинаковой. Например, если градация толщины стальной горячекатаной ленты 0,25 мм, то весь ряд толщин ленты должен быть указан с точностью до второго десятичного знака.

В зависимости от технической характеристики и назначения продукции количество десятичных знаков числовых значений величин одного и того же параметра, размера, показателя или нормы может иметь несколько ступеней (групп) и должно быть одинаковым только внутри этой ступени (группы).

2. ПРАВИЛА ОКРУГЛЕНИЯ

2.1. Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

Пример. Округление числа 132,48 до четырех значащих цифр будет 132,5.

2.2. В случае, если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя сохраняемая цифра не меняется.

Пример. Округление числа 12,23 до трех значащих цифр дает 12,2.

2.3. В случае, если первая из отбрасываемых цифр (считая слева направо) равна 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример. Округление числа 0,145 до двух значащих цифр дает 0,15.

Примечание. В тех случаях, когда следует учитывать результаты предыдущих округлений, следует поступать следующим образом:

1) если отбрасываемая цифра получилась в результате предыдущего округления в большую сторону, то последняя сохраняемая цифра сохраняется;

Пример. Округление до одной значащей цифры числа 0,15 (полученного после округления числа 0,149) дает 0,1.

2) если отбрасываемая цифра получилась в результате предыдущего округления в меньшую сторону, то последняя оставшаяся цифра увеличивается на единицу (с переходом при необходимости в следующие разряды).

Пример. Округление числа 0,25 (полученного в результате предыдущего округления числа 0,252) дает 0,3.

2.4. В случае, если первая из отбрасываемых цифр (считая слева направо) больше 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример. Округление числа 0,156 до двух значащих цифр дает 0,16.

2.5. Округление следует выполнять сразу до желаемого количества значащих цифр, а не по этапам.

Пример. Округление числа 565,46 до трех значащих цифр производится непосредственно на 565. Округление по этапам привело бы к:

565,46 в I этапе - к 565,5,

а во II этапе - 566 (ошибочно).

2.6. Целые числа округляют по тем же правилам, как и дробные.

Пример. Округление числа 12 456 до двух значащих цифр дает 12·10 3 .

Тема 01.693.04-75.

3. Стандарт СЭВ утвержден на 41-м заседании ПКС.

4. Сроки начала применения стандарта СЭВ:

Страны - члены СЭВ

Срок начала применения стандарта СЭВ в договорно-правовых отношениях по экономическому и научно-техническому сотрудничеству

Срок начала применения стандарта СЭВ в народном хозяйстве

НРБ

Декабрь 1979 г.

Декабрь 1979 г.

ВНР

Декабрь 1978 г.

Декабрь 1978 г.

ГДР

Декабрь 1978 г.

Декабрь 1978 г.

Республика Куба

МНР

ПНР

СРР

СССР

Декабрь 1979 г.

Декабрь 1979 г.

ЧССР

Декабрь 1978 г.

Декабрь 1978 г.

5. Срок первой проверки - 1981 г., периодичность проверки - 5 лет.

При округлении оставляют лишь верные знаки, остальные отбрасывают.

Правило 1. Округление достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше, чем 5.

Правило 2. Если первая из отбрасываемых цифр больше, чем 5, то последняя цифра увеличивается на единицу. Последняя цифра увеличивается также и в том случае, когда первая из отбрасываемых цифр 5, а за ней есть одна или несколько цифр, отличных от нуля. Например, различные округления числа 35,856 будут 35,86; 35,9; 36.

Правило 3. Если отбрасываемая цифра равна 5, а за ней нет значащих цифр, то округление производится на ближайшее четное число, т.е. последняя сохраняемая цифра остается неизменной, если она четная и увеличивается на единицу, если она нечетная. Например, 0,435 округляем до 0,44; 0,465 округляем до 0,46.

8. ПРИМЕР ОБРАБОТКИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Определение плотности твердых тел. Предположим, твердое тело имеет форму цилиндра. Тогда плотность ρ может быть определена по формуле:

где D – диаметр цилиндра, h – его высота, m – масса.

Пусть в результате измерений m, D, и h получены следующие данные:

№ п/п m, г Δm, г D, мм ΔD, мм h, мм Δh, мм , г/см 3 Δ , г/см 3
51,2 0,1 12,68 0,07 80,3 0,15 5,11 0,07 0,013
12,63 80,2
12,52 80,3
12,59 80,2
12,61 80,1
среднее 12,61 80,2 5,11

Определим среднее значение D̃:

Найдем погрешности отдельных измерений и их квадраты

Определим среднюю квадратичную погрешность серии измерений:

Задаем значение надежности α = 0,95 и по таблице находим коэффициент Стьюдента t α . n =2,8 (для n = 5). Определяем границы доверительного интервала:



Так как вычисленное значение ΔD = 0,07 мм значительно превышает абсолютную ошибку микрометра, равную 0,01 мм (измерение производится микрометром), то полученное значение может служить оценкой границы доверительного интервала:

D = D ̃ ± ΔD ; D = (12,61 ±0,07) мм.

Определим значение h̃:

Следовательно:

Для α = 0,95 и n = 5 коэффициент Стьюдента t α , n = 2,8.

Определяем границы доверительного интервала

Так как полученное значение Δh = 0,11 мм того же порядка, что и ошибка штангенциркуля, равная 0,1 мм (измерение h производится штангенциркулем), то границы доверительного интервала следует определить по формуле:

Следовательно:

Вычислим среднее значение плотности ρ:

Найдем выражение для относительной погрешности:

где

7. ГОСТ 16263-70 Метрология. Термины и определения.

8. ГОСТ 8.207-76 Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений.

9. ГОСТ 11.002-73 (ст. СЭВ 545-77) Правила оценки аномальности результатов наблюдений.


Царьковская Надежда Ивановна

Сахаров Юрий Георгиевич

Общая физика

Методические указания к выполнению лабораторных работ «Введение в теорию погрешностей измерений» для студентов всех специальностей

Формат 60*84 1/16 Объем 1 уч.-изд. л. Тираж 50 экз.

Заказ ______ Бесплатно

Брянская государственная инженерно-технологическая академия

Брянск, проспект Станке Димитрова, 3, БГИТА,

Редакционно-издательский отдел

Отпечатано – подразделение оперативной печати БГИТА

), записанное с меньшим количеством значащих цифр. Модуль разности между заменяемым и заменяющим числом называется ошибкой округления .

Округление применяется для представления значений и результатов вычислений с тем количеством знаков, которое соответствует реальной точности измерений или вычислений, либо той точности, которая требуется в конкретном приложении. Округление в ручных расчётах также может использоваться для упрощения вычислений в тех случаях, когда погрешность, вносимая за счёт ошибки округления, не выходит за границы допустимой погрешности расчёта.

Общий порядок округления и терминология

Методы

В разных сферах могут применяться различные методы округления. Во всех этих методах «лишние» знаки обнуляют (отбрасывают), а предшествующий им знак корректируется по какому-либо правилу.

  • Округление к ближайшему целому (англ. rounding ) - наиболее часто используемое округление, при котором число округляется до целого, модуль разности с которым у этого числа минимален. В общем случае, когда число в десятичной системе округляют до N-го знака, правило может быть сформулировано следующим образом:
    • если N+1 знак < 9 , то N-й знак сохраняют, а N+1 и все последующие обнуляют;
    • если N+1 знак ≥ 5 , то N-й знак увеличивают на единицу, а N+1 и все последующие обнуляют;
    Например: 11,9 → 12; −0,9 → −1; −1,1 → −1; 2,5 → 3. Максимальная дополнительная абсолютная погрешность, вносимая при таком округлении (погрешность округления), составляет ±0,5 последнего сохраняемого разряда.
  • Округление к меньшему по модулю (округление к нулю, целое англ. fix, truncate, integer ) - самое «простое» округление, поскольку после обнуления «лишних» знаков предшествующий знак сохраняют, то есть технически оно состоит в отбрасывании лишних знаков. Например, 11,9 → 11; −0,9 → 0; −1,1 → −1). При таком округлении может вноситься погрешность в пределах единицы последнего сохраняемого разряда, причём в положительной части числовой оси погрешность всегда отрицательна, а в отрицательной - положительна.
  • Округление к большему (округление к +∞, округление вверх, англ. ceiling - досл. «потолок») - если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу, если число положительное, или сохраняют, если число отрицательное. В экономическом жаргоне - округление в пользу продавца , кредитора (лица, получающего деньги). В частности, 2,6 → 3, −2,6 → −2. Погрешность округления - в пределах +1 последнего сохраняемого разряда.
  • Округление к меньшему (округление к −∞, округление вниз, англ. floor - досл. «пол») - если обнуляемые знаки не равны нулю, предшествующий знак сохраняют, если число положительное, или увеличивают на единицу, если число отрицательное. В экономическом жаргоне - округление в пользу покупателя , дебитора (лица, отдающего деньги). Здесь 2,6 → 2, −2,6 → −3. Погрешность округления - в пределах −1 последнего сохраняемого разряда.
  • Округление к большему по модулю (округление к бесконечности, округление от нуля) - относительно редко используемая форма округления. Если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу. Погрешность округления составляет +1 последнего разряда для положительных и −1 последнего разряда для отрицательных чисел.

Варианты округления 0,5 к ближайшему целому

Отдельного описания требуют правила округления для специального случая, когда (N+1)-й знак = 5, а последующие знаки равны нулю . Если во всех остальных случаях округление до ближайшего целого обеспечивает меньшую погрешность округления, то данный частный случай характерен тем, что для однократного округления формально безразлично, производить его «вверх» или «вниз» - в обоих случаях вносится погрешность ровно в 1/2 младшего разряда. Существуют следующие варианты правила округления до ближайшего целого для данного случая:

  • Математическое округление - округление всегда в бо́льшую по модулю сторону (предыдущий разряд всегда увеличивается на единицу).
  • Банковское округление (англ. banker"s rounding ) - округление для этого случая происходит к ближайшему чётному , то есть 2,5 → 2; 3,5 → 4.
  • Случайное округление - округление происходит в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике). Также часто используется округление с неравными вероятностями (вероятность округления вверх равна дробной части), этот способ делает накопление ошибок случайной величиной с нулевым математическим ожиданием.
  • Чередующееся округление - округление происходит в меньшую или большую сторону поочерёдно.

Во всех вариантах в случае, когда (N+1)-й знак не равен 5 или последующие знаки не равны нулю, округление происходит по обычным правилам: 2,49 → 2; 2,51 → 3.

Математическое округление просто формально соответствует общему правилу округления (см. выше). Его недостатком является то, что при округлении большого числа значений, которые далее будут обрабатываться совместно, может происходить накопление ошибки округления . Типичный пример: округление до целых рублей денежных сумм, выражаемых в рублях и копейках. В реестре из 10 000 строк (если считать копеечную часть каждой суммы случайным числом с равномерным распределением, что обычно вполне допустимо) окажется в среднем около 100 строк с суммами, содержащими в части копеек значение 50. При округлении всех таких строк по правилам математического округления «вверх» сумма «итого» по округлённому реестру окажется на 50 рублей больше точной.

Три остальных варианта как раз и придуманы для того, чтобы уменьшить общую погрешность суммы при округлении большого количества значений. Округление «до ближайшего чётного» исходит из предположения, что при большом числе округляемых значений, имеющих 0,5 в округляемом остатке, в среднем половина из них окажется слева, а половина - справа от ближайшего чётного, таким образом, ошибки округления взаимно погасятся. Строго говоря, предположение это верно лишь тогда, когда набор округляемых чисел обладает свойствами случайного ряда, что обычно верно в бухгалтерских приложениях, где речь идёт о ценах, суммах на счетах и так далее. Если же предположение будет нарушено, то и округление «до чётного» может приводить к систематическим ошибкам. Для таких случаев лучше работают два следующих метода.

Два последних варианта округления гарантируют, что примерно половина специальных значений будет округлена в одну сторону, половина - в другую. Но реализация таких методов на практике требует дополнительных усилий по организации вычислительного процесса.

  • Округление в случайную сторону требует для каждой округляемой строки генерировать случайное число. При использовании псевдослучайных чисел, создаваемых линейным рекуррентным методом, для генерации каждого числа требуется операция умножения, сложения и деления по модулю, что для больших объёмов данных может существенно замедлить расчёты.
  • Чередующееся округление требует хранить флаг, показывающий, в какую сторону последний раз округлялось специальное значение, и при каждой операции переключать значение этого флага.

Обозначения

Операция округления числа x к большему (вверх ) обозначается следующим образом: ⌈ x ⌉ {\displaystyle \lceil x\rceil } . Аналогично, округление к меньшему (вниз ) обозначается ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } . Эти символы (а также английские названия для этих операций - соответственно, ceiling и floor , досл. «потолок» и «пол») были введены К. Айверсоном в его работе A Programming Language , описавшей систему математических обозначений, позже развившуюся в язык программирования APL . Айверсоновские обозначения операций округления были популяризированы Д. Кнутом в его книге «Искусство программирования» .

По аналогии, округление к ближайшему целому часто обозначают как [ x ] {\displaystyle \left} . В некоторых прежних и современных (вплоть до конца XX века) работах так обозначалось округление к меньшему; такое использование этого обозначения восходит ещё к работе Гаусса 1808 года (третье его доказательство квадратичного закона взаимности). Кроме того, это же обозначение используется (с другим значением) в нотации Айверсона .

Использование округлений при работе с числами ограниченной точности

Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного истинного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах ошибки измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя - сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.

Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,4 м с точностью до сантиметра, то момент силы в кгс по формуле M = (m g) ⋅ h {\displaystyle M=(mg)\cdot h} , в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс 1,4 м = 8,141 кгс м . Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7 10 −4 , второго - 1/140 ≈ 7,1 10 −3 , относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3 10 −3 , что соответствует максимальной абсолютной погрешности результата ±0,059 кгс м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс м, таким образом, в рассчитанном значении 8,141 кгс м полностью надёжной является только первая цифра, даже вторая - уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс м .

Эмпирические правила арифметики с округлениями

В тех случаях, когда нет необходимости в точном учёте вычислительных погрешностей, а требуется лишь приблизительно оценить количество точных цифр в результате расчёта по формуле, можно пользоваться набором простых правил округлённых вычислений :

  1. Все исходные значения округляются до реальной точности измерений и записываются с соответствующим числом значащих цифр, так, чтобы в десятичной записи все цифры были надёжными (допускается, чтобы последняя цифра была сомнительной). При необходимости значения записываются со значащими правыми нулями, чтобы в записи указывалось реальное число надёжных знаков (например, если длина в 1 м реально измерена с точностью до сантиметров, записывается «1,00 м», чтобы было видно, что в записи надёжны два знака после запятой), или точность явно указывается (например, 2500±5 м - здесь надёжными являются только десятки, до них и следует округлять).
  2. Промежуточные значения округляются с одной «запасной» цифрой.
  3. При сложении и вычитании результат округляется до последнего десятичного знака наименее точного из параметров (например, при вычислении значения 1,00 м + 1,5 м + 0,075 м результат округляется до десятых метра, то есть до 2,6 м). При этом рекомендуется выполнять вычисления в таком порядке, чтобы избегать вычитания близких по величине чисел и производить действия над числами по возможности в порядке возрастания их модулей.
  4. При умножении и делении результат округляется до наименьшего числа значащих цифр, которое имеют множители или делимое и делитель. Например, если тело при равномерном движении прошло дистанцию 2,5⋅10 3 метров за 635 секунд , то при вычислении скорости результат должен быть округлён до 3,9 м/с , поскольку одно из чисел (расстояние) известно лишь с точностью до двух значащих цифр. Важное замечание: если один операндов при умножении или делитель при делении является по смыслу целым числом (то есть не результатом измерений непрерывной физической величины с точностью до целых единиц, а, например, количеством или просто целой константой), то количество значащих цифр в нём на точность результата операции не влияет, и оставляемое число цифр определяется только вторым операндом. Например, кинетическая энергия тела массой 0,325 кг , движущегося со скоростью 5,2 м/с , равна E k = m v 2 2 = 0.325 ⋅ 5.2 2 2 = 4.394 ≈ 4.4 {\displaystyle E_{k}={\tfrac {mv^{2}}{2}}={\tfrac {0.325\cdot 5.2^{2}}{2}}=4.394\approx 4.4} Дж - округляется до двух знаков (по количеству значащих цифр в значении скорости), а не до одного (делитель 2 в формуле), так как значение 2 по смыслу - целая константа формулы, она является абсолютно точной и не влияет на точность вычислений (формально такой операнд можно считать «измеренным с бесконечным числом значащих цифр»).
  5. При вычислении значения функции f (x) {\displaystyle f\left(x\right)} требуется оценить значение модуля


 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з