Динамическая балансировка якоря в домашних условиях. Статическая балансировка. Процесс бронирования оболочки ротора

Сборка является заключительным технологическим процессом, от качества исполнения которого в значительной мере зависят энергетические и эксплуатационные показатели машин - КПД, уровень вибраций и шума, надежность и долговечность. Сборку необходимо производить используя детали и сборочные единицы, принадлежащие данной машине, так как обезличенная сборка более сложна в организационном отношении и при ней возможны случаи, когда характеристики машины не будут соответствовать требованиям стандартов. На качество сборки влияют правильная организация рабочего места и использование исправного инструмента. Собранная машина подвергается обкатке и испытаниям.

§ 10.1. Балансировка роторов и якорей

Перед сборкой производят балансировку роторов (якорей) и других вращающихся деталей, если они ремонтировались или при предремонтных испытаниях была обнаружена повышенная вибрация. Согласно ГОСТ 12327-79 компенсация неуравновешенности должна производиться в двух плоскостях исправления при отношении осевого размера L детали к диаметру D больше 0,2; при L/D<0,2 - в одной плоскости. Детали, устанавливаемые на отбалансированный ротор, балансируются отдельно. Если деталь устанавливают на ротор (якорь) с помощью шпонки, то она балансируется со шпонкой, а ротор - без шпонки.

При одной плоскости исправления ротор (якорь) можно балансировать как статическим, так и динамическим способами, а при двух плоскостях - только динамическим.

Статическая балансировка. Ротор балансируют на призмах (10.1). Отклонение плоскости призм от горизонтальной плоскости не должно превышать 0,1 мм на 1 м длины призмы. Шероховатость поверхности призм должна быть не хуже

Ротор (якорь) устанавливают на призмы и легким толчком выводят из равновесия, предоставляя ему возможность катиться по призмам. После нескольких качаний несбалансированный ротор (якорь) остановится. В верхней точке ротора устанавливают пробный груз и повторяют опыт. Так поступают несколько раз и подбирают груз. Ротор считается отбалансированным, если он останавливается без качаний в состоянии безразличного равновесия. Пробный груз взвешивают и на его место устанавливают штатный груз, равный по массе пробному.

Если балансируемые детали не имеют вала, то изготовляют технологический вал, на котором производят балансировку.

Динамическая балансировка. Ротор балансируют на станке при его вращении. Современные балансировочные станки позволяют определить место установки и массу груза. Их использование при ремонте весьма желательно, но при большой номенклатуре ремонтируемых машин частная переналадка снижает эффективность станков и их применение не всегда является обоснованным. Использование универсального балансировочного станка позволяет решить эту задачу (10.2).

Балансируемый ротор 4 устанавливают на четыре круглые опоры 2 и 6. Опоры расположены на раме 7, состоящей из двух круглых балок. Двигателем 5 через ремень 3 ротор приводится во вращение. Левая сторона рамы крепится к основанию плоской пружиной 1 и при вращении ротора остается неподвижной, а правая сторона опирается на пружины 9 и при вращении ротора начинает колебаться под действием неуравновешенных масс правой стороны ротора.

Величину колебаний показывает стрелочный индикатор 8. После определения величины колебаний останавливают ротор и навешивают пробный груз (пластилин) на правую сторону ротора. Если при очередном вращении величина колебаний увеличивается, то это означает, что пробный груз установлен неверно. Передвигая груз по окружности, находят место, где его расположение вызывает наименьшие колебания. Затем начинают изменять массу пробного груза, добиваясь минимума колебаний. Отбалансировав правую часть, снимают пробный и устанавливают постоянный груз. Затем ротор поворачивают и балансируют вторую сторону.

Большинство станков ремонтных заводов выполнены по принципу измерения величины вектора дисбаланса по максимальному отклонению опор на резонансных частотах вращения. Этим измеряется величина вектора. Направление вектора фиксируется следящей системой по углу поворота проверяемого тела вращения. Показатели суммируются в измерительном устройстве, по взаимной реакции катушек прибора, по принципу электродинамического ваттметра.

Первоначально замеряется существующий дисбаланс. Его коррекция заключается в установке балансировочных грузов предусмотренных чертежом изделия в направлении прямо противоположном измеренному вектору. Либо в небольшом снятии металла в направлении строго соответствующему измеренному вектору.

Грузы в зависимости от конструкции узла закрепляются временно или постоянно. Производится повторный замер вектора и корректировка установленных грузов, либо их, предусмотренное конструкцией, окончательное закрепление, если величина остаточного дисбаланса соответствует допускаемой

Серийно выпущенные станки для динамической балансировки

Весьма широко применяются станки производства Минского станкостроительного завода типа 9717, 9718, 9719. Это оборудование имеет значительные габариты и требует для установки железобетонных фундаментов большого объема. На них осуществляется балансировка деталей и сборочных единиц от 0,5 до 5.0 тонн. Это якоря электрических машин и колесные пары. С середины 80-х годов была изменена конструкция фланцев якорей генераторов. Внешняя поверхность гнезда под установку кольца для центровки выполнена в виде удлиненного бурта цилиндрической формы, которая может непосредственно служить базовой поверхностью при динамической балансировке якоря. Это позволило отказаться от установки дополнительных втулок, уменьшить трудоемкость операции и увеличить ее точность.

Рис.20 Балансировка якоря на станке 9719

Новое поколение станков

В последнее время на заводах появилось новое поколение балансировочных станков предлагаемых сегодня рынком. В частности это станки фирмы «ДИАМЕХ». Особенностью станков является то, что замер дисбаланса производится не за счет максимального отклонения подвижных подшипниковых опор, а за счет реакции жестко закрепленных опор. При этом сама реакция измеряется как величина напряжений тензометрическим способом при помощи встроенных датчиков. Все результаты суммируются и обрабатываются на встроенном в станок компьютере с выводом информации на дисплей.



Данная конструкция станка не требует фундаментов для своего монтажа. Установка станка осуществляется непосредственно на поверхности полов. Габариты этих станков незначительно превышают габариты изделия подвергаемого балансировке.

Рис.21 Динамическая балансировка на станке ВМ3000 фирмы ДИАМЕХ

Весьма характерной деталью для станков нового поколения является отсутствие фундамента и передача детали вращения ременным приводом.

Часто после длительного использования у электродвигателей появляются посторонние шумы или повышенная вибрация. Эти признаки свидетельствуют о дисбалансе. В исправном состоянии ось инерции ротора должна совпадать с осью вращения, однако во время длительной эксплуатации и после возможных перегрузок эти оси могут смещаться. Именно поэтому необходимо проводить регулярную диагностику электродвигателей. ООО «ВЭР» предоставляет услуги не только по диагностике, но и по балансировке электродвигателей любых видов по приемлемым ценам и в кратчайшие сроки.

Одна из услуг ООО «ВЭР» – балансировка якоря электродвигателей. Она производится с помощью специального оборудования, позволяющего вычислить мельчайшие отклонения во вращении ротора. После небольшой корректировки двигатели вновь готовы к дальнейшей эксплуатации. Давайте разберёмся, что такое балансировка роторов якорей электрических двигателей и для чего она проводится.

Для чего нужна балансировка электродвигателя

Каждый двигатель оснащён быстро вращающимся ротором (якорем). Скорость вращения может достигать тысяч и десятков тысяч оборотов в минуту. От двигателя требуется не только высокая скорость, но и равномерность вращения – без отклонений, даже самых минимальных. Для этого он подвергается балансировке ещё на заводе-изготовителе. В процессе эксплуатации ротор выдерживает большие нагрузки, из-за чего его балансировка нарушается. Последствия могут быть самыми разными:

  • быстрый износ вращающихся и неподвижных частей электродвигателя – нарушение баланса начинает его разрушать, причём наблюдается всё большее отклонение от нормы;
  • возникают вибрации – они нарушают работу электродвигателя и подключенного к нему оборудования. В случае с мощными двигателями, устанавливаемыми на бетонные платформы, начинается неконтролируемое разрушение последних. Больше всего от вибраций страдают подшипники, что приводит к ещё более разрушительным последствиям – вплоть до полного выхода двигателя и оборудования/электроустановки из строя;
  • повышается нагрузка на двигатель и его электрические части – износ становится стремительным, а эксплуатация – опасной.

Дисбаланс якоря – это состояние, когда ось вращения не совпадает с центральной осью инерции. Такое состояние называется неуравновешенным, двигатель нуждается в тонкой настройке. Их балансировка осуществляется силами специалистов ООО «ВЭР».

Причины дисбаланса якорей

Существуют несколько причин отсутствия балансировки якорей:

  • наличие скрытых дефектов ротора – проявляются места неуравновешенной массы, что приводит к неравномерному вращению;
  • неравномерность расположения обмоток – проявляется в самом начале эксплуатации электродвигателей, но может проявиться и в дальнейшем;
  • нарушение центра масс из-за неправильной формы каких-либо деталей – это может быть заводской или приобретённый дефект.

Также существуют и многие другие причины – например, центр масс может потеряться из-за теплового расширения отдельных деталей двигателя в силу высокой нагрузки.

Как производится балансировка электродвигателей

Балансировка роторов якорей производится двумя способами – статическим и динамическим. Статическая балансировка производится на остановленном двигателей с помощью несложного оборудования или специальных весов. Определив расположение центра масс, специалисту остаётся вычислить необходимую для корректировки массу и определить место для её установки. Чем опытнее специалист, тем выше точность такой балансировки. Все работы, в том числе измерительные, производятся в состоянии покоя. После завершения процедуры производятся повторные измерения и контрольный запуск двигателя.

Динамическая балансировка якоря производится на специальном оборудовании при запущенном двигателе или раскрученном вале. Здесь используется так называемый балансировочный станок. Он определяет неуравновешенность во вращении, позволяя выполнить балансировку с максимальной точностью.

Динамическая балансировка роторов электродвигателей позволяет выявить статочную неуравновешенность, оставшуюся после статической балансировки. Именно поэтому последняя используется только при грубых нарушениях. Например, этот метод применяется при работе с маломощными электродвигателями с частотой вращения не выше 1000 об/мин. Здесь небольшой дисбаланс практически незаметен. Если двигатель вращается с частотой свыше 1000 об/мин, задействуется динамическая балансировка – более точная. Она позволяет выявить даже самый ничтожный дисбаланс.

Ротор электродвигателя представляет собой сложную конструкцию с множеством элементов, каждый из которых наделен своими нормативными показателями. В идеальном состоянии ось инерции ротора должна совпадать с осью вращения, однако под воздействием внешних факторов длительное использование двигателей может приводить к их разбалансировке. В таких условиях своевременная диагностика и устранение неполадок может стать единственным выходом для продления срока службы электродвигателя.

Балансировка якоря и ротора электродвигателя в Волгограде, Санкт-Петербурге и Волжском

ООО «ВЭР» производит балансировку якоря и ротора электродвигателей двумя способами в зависимости от угловой скорости. Так для электродвигателей с тихим ходом специалисты применяют балансировку в статическом режиме , а для быстроходных электродвигателей – балансировку в динамическом режиме . Балансировка в статическом режиме – это сложная и трудоемкая процедура, требующая временных затрат, большого количества вычислений и измерений. Именно поэтому мы рекомендуем при возникновении проблем обращаться к профессионалам нашей компании, которые с высокой точностью проведут все необходимые замеры и выполнят качественную балансировку вашего оборудования.

Воспользоваться услугами по вы сможете в ООО «ВЭР». В своей работе мы используем современное высокоточное оборудование , позволяющее вычислить малейшие следы дисбаланса и устранить их с высокой точностью. Сотрудники, работающие на оборудовании, обладают большим опытом работы, благодаря чему они способны оперативно найти и устранить неуравновешенность центра масс в электродвигателях любых марок – в том числе особо мощных и высокооборотистых.

7-6. БАЛАНСИРОВКА РОТОРОВ

Если вращающаяся часть машины не уравновешена, то при вращении ее появляется сотрясение (вибрация) всей машины. Вибрация вызывает разрушение подшипников, фундамента и самой машины. Для устранения

вибрации вращающиеся части должны быть отбалансированы. Различают балансировку статическую, выполняемую на призмах, и динамическую при вращении балансируемой детали. Если, например, ротор, изображенный на рис. 7-9,а, имеет более тяжелую половину //, то при вращении центробежная сила этой половины будет больше центробежной силы половины /. Она будет создавать давление на подшипники, переменное по на-

Рис. 7-9. Смещение центра тяжести ротора,

правлению, и вызывать сотрясение машины. Такай небаланс устраняется статической балансировкой на призмах. Ротор шейками вала ставится «а призмы, точно выверенные по горизонтали, и при этом, естественно, поворачивается тяжелой стороной вниз. На верхнюю сторону в специальные канавки, которые предусматриваются в нажимных шайбах и обмоткодержателях, подбирают и ставят свинцовые грузы такого веса, чтобы ротор оставался.на призмах в безразличном положении. После балансировки свинцовые грузы обычно заменяют на стальные одинакового веса, которые надежно приваривают или привертывают к ротору. Однако для длинных якорей и роторов статической балансировки недостаточно. Даже если отбалансировать обе половины ротора так, что веса обеих половин будут одинаковыми (рис. 7-9,6), то может оказаться, что центры тяжести сдвинуты по оси машины. В этом случае центробежные силы двух половин не могут уравновесить друг друга, а создают пару сил, вызывающую переменное давление на подшипники. Для устранения действия этой пары сил должны быть размещены специальные грузы (рис. 7-9,6) с тем, чтобы создать пару сил, действующую обратно паре сил.небаланса. Найти величину и положение этих

грузов можно путем балансировки вращающегося ротора (динамическая балансировка).

Перед проведением динамической балансировки следует проверить рабочие поверхности ротора (шейки и концы вала, коллектор, контактные кольца, сталь ротора) на отсутствие биения и при необходимости устранить его. Если для установки ротора на станок приме-

Рис. 7-10. Схема динамической балансировки,

«лютея какие-либо оправки, то они должны быть проверены на отсутствие биения и небаланса.

Па роторе не должно быть плохо закрепленных деталей, так как в этом случае балансировка невозможна. Для проведения динамической балансировки ротор укладывают в подшипники специального станка. Эти подшипники укреплены на плоских пружинах и по желанию могут либо быть закреплены неподвижно специальным тормозом, либо совершать свободные колебания вместе с пружиной (рис. 7-10,а). Ротор при помощи электродвигателя и муфты приводится во вращение. Появляющаяся при этом сила небаланса, которая направлена радиально, будет раскачивать подшипники станка. Для проведения балансировки один подшипник закрепляется тормозом неподвижно, второй освобождается и под влиянием небаланса колеблется. На какой-либо точно обработанной поверхности ротора, концентричной с осью вала, делают цветным карандашом отметку, показывающую точку наибольшего отклонения ротора (рис. 7-10,6).

Однако по этой точке еще нельзя точно определить


место, где находится небаланс ротора, так как наибольшее отклонение ротора получается после прохождения силы небаланса через горизонтальную плоскость, в которой находится отметчик (карандаш).

Угол сдвига (т. е. угол между точкой небаланса и отметкой) зависит от отношения скорости вращения к собственной частоте колебания ротора на опорах, т. е. к частоте колебаний, которые будут иметь место, если толкнуть невращающийся ротор, установленный на опорах станка.

При совпадении числа оборотов в секунду с собственной частотой имеет место резонанс. Колебания приобретают наибольший размах и, следовательно, станок становится наиболее чувствительным. Поэтому стремятся вести балансировку при резонансном числе оборотов. При этом указанный выше угловой сдвиг становится близким к 90° и, следовательно, место небаланса может быть найдено отсчетом от середины отметки-90° вперед по вращению (а место установки груза 90° против вращения). Если же почему-либо работать на резонансной скорости нельзя, то для определения места положения небаланса повторяют описанный опыт при обратном направлении вращения при том же числе оборотов в ми-иуту. Отметку делают карандашом другого цвета. Тогда середина между двумя отметками определяет место, где находится небаланс. В диаметрально противоположной точке устанавливают балансный груз. Величину этого груза определяют подбором до исчезновения вибрации подшипника. Вместо укрепления груза балансировка может быть получена путем высверливания противополож-«ой части якоря. После того как отбалансирована одна сторона ротора, подшипник этой стороны закрепляют неподвижно, а подшипник второй стороны освобождают и аналогичными приемами балансируют вторую сторону. После этого проверяют балансировку первой стороны и в случае необходимости корректируют и т. д.

В настоящее время существует большое число станков для динамической балансировки, на которых местоположения и величины груза определяются достаточно удобно и точно. Методы работы на этих станках даются в инструкциях заводов-изготовителей.

При отсутствии специальных станков динамическая балансировка может производиться на прочных дере-

вянных брусьях, уложенных на резиновые прокладки. На эти брусья кладут либо непосредственно шейки вала балансируемого ротора, либо вкладыши подшипников, в которых лежат шейки вала. При помощи клиньев брусья могут закрепляться неподвижно. Ротор разворачивается ременной передачей, охватывающей непосредственно сталь, затем клин вынимается, и подшипник получает возможность колебаться на резиновых подкладках. Процесс балансировки аналогичен описанному выше.

В условиях ремонта, в особенно для крупных машин, целесообразна балансировка в собранном виде [Л. 8]; для этой цели машину запускают вхолостую и измеряют вибрацию подшипников Это измерение следует производить при помощи виброметров (например, типов ВР-1, ВР-3, 2ВК, ЗВК).

При отсутствии виброметров вибрацию можно измерить индикатором, укрепленным на массивной тяжелой рукоятке Прижимая щуп такого индикатора к колеблющейся детали, можно по ширине размытого очертания стрелки определить величину размаха колебания

Следует иметь в виду, что показания такого виброметра сильно зависят от скорости вращения и что поэтому его показания можно яопользавать главным образом как сравнительные при одном и том же числе оборотов машины, что достаточно для целей балансировки.

Измеряя вибрацию подшипника в различных направлениях, находят точку наибольшей вибрации. По этой точке и ведется балансировка.

Для нахождения величины и местоположения балансировочного груза на ротор в произвольную точку помещают пробный груз и снова измеряют вибрацию. Очевидно, что, изучив, как влияет на вибрацию пробный груз, величина и местоположение которого известны, можно определить и величину небаланса и место его положения. Если можно измерить, как в результате установки пробного груза именяется величина и фаза вибрации (см. ниже), то можно обойтись двумя измерениями: до и после установки пробного груза. Если же определить изменение фазы нельзя, то необходимо сделать большее (3-4) число измерений величины вибрации. Пробный груз помещается при этом вначале в какую-либо произвольную точку, а затем поочередно в точки, отстоящие на Уз окружности вправо и влево от первой.

Для определения изменения фазы можно прибегнуть к отметкам на валу, как это описывалось выше. Вал при этом закрашивается мелом и острой чертилкой осторож-«0 наносятся (по возможности короткие) метки, середи-!на которых соответствует наибольшему отклонению вала в плоскости, где расположен отметчик (чертилка). Угловое расстояние (угол а) между метками при отсутствии пробного груза и при его наличии является мерой сдвига фазы колебания, обусловленного внесением пробного груза.

Более точно сдвиг фазы определяется стробоскопическим способом. В этом случае на торец вала наносится метка, освещаемая вспышками газосветной лампы. Эта лампа управляется специальным контактом, имеющимся з виброметре, который замыкается 1 раз за оборот вала в момент, близкий к наибольшему размаху колебания.

Метка на вращающемся валу кажется при этом неподвижной (поскольку лампа освещает ее каждый раз в тот момент, когда она, пройдя один оборот, окажется точно в том же положении), и против нее «а неподвижной части машины также может быть нанесена метка.

После внесения пробного груза отметка на валу сдвигается относительно отметки на неподвижной части. Нанеся вторую отметку на неподвижной части, соответствующую новому положению отметки на валу, и измерив угловое расстояние (угол а) между ними, определяем угол сдвига фазы колебания.

Возможность определения фазы стробоскопическим способом предусмотрена в специальных балансировочных виброскопах системы Колесника 2ВК, ЗВК, выпускаемых Ленинградским инструментальным заводом, и в виброскопах типа БИП Киевского электромеханического завода

Графический метод определения местоположения груза виден из рис. 7-11,а. Здесь отрезок-„вектор" оа в определенном масштабе равен размаху колебания подшипника до внесения пробного груза. Пробный груз Р тр ставится в плоскости, сдвинутой от отметки, полученной при этом на валу на какой-либо угол, например на 90°,-линия О В. Измерив теперь размах колебания подшипника (при том же числе оборотов в минуту), отметив новую метку и определив угловой сдвиг между отметками - а, отложим теперь в том же масштабе под углом « к вектору оа вектор ob,

Очевидно, что если вектор оа изображает вибрацию от небаланса, вектор ob вибрацию от совместного дей-ствия пробного груза и небаланса, то разностный век. тор аЪ определяет величину и фазу вибрации, вызванную пробным грузом.

Рис 7-11 Определение величины и местоположения балансировочных грузов

Для того чтобы уничтожить вибрацию от небаланса надо повернуть вектор ab на угол § и увеличить его так, чтобы он был равен вектору оа и направлен против него. Очевидно, что для этого пробный груз Р гр должен быть сдвинут из точки В в точку С (на угол S) и увеличен в отношении отрезков ^-. Балансировочный груз

i должен быть, следовательно, равен:

Аналогичным способом балансируется вторая сторона машины, но определенный для этой стороны груз Q"z распределяется на два груза Q 2 и Q H . Делается это с той целью, чтобы не нарушить балансировку первой стороны.

Груз <2г помещается в точку, определенную описанным выше способом для второй стороны, а груз СЬ Д переносится на первую сторону и закрепляется в точке диаметрально противоположной Q 2 (рис.-7-11,6). Величины грузов Q 2 я Qia определяются из выражений:

где размеры т, п, a, b, RiR^R 3 видны из рис. 7-111,б. Несмотря на такое распределение груза Q"2, приходится обычно еще раз производить (корректировочную) балансировку.первой стороны после того, как установлены грузы Q 2 и СЬ Д.

Наиболее просто качество балансировки может быть проверено путем установки машины на гладкостроганую горизонтальную плиту. При удовлетворительной балансировке машина, работающая с номинальным числом оборотов, не должна иметь качаний и перемещений по плите. Проверка производится при холостом ходе в режиме двигателя.

Внутри статора двигателя помещается его вращающаяся часть – ротор. Это цилиндр, набранный из стальных листов, как и статор, на поверхности которого имеются пазы.

В пазы укладываются медные стержни – обмотка, замкнутая на торцах медными кольцами. Пазы в этом случае круглого сечения, а обмотка имеет вид клетки, называемой “бельичим колесом”. Пазы могут быть другого типа, а короткозамкнутая обмотка получается заливкой пазов алюминием, одновременно на торцах отливают и короткозамыкающие кольца с полостями для вентиляции. Эл. двигатели такого типа называются – короткозамкнутыми. Обмотка ротора короткозамкнутого двигателя является многофазной.

В пазах ротора может быть уложена также обмотка, подобная обмотке статора. В этом случае три вывода от обмотки лежащей в пазах присоединяются к трем контактным кольцам, насаженных на вал, кольца изолированы друг от друга и от вала.

При помощи щеток, наложенных на кольца, обмотка ротора присоединяется к реостату, который служит для пуска двигателя или для регулировки его скорости (частоты) вращения. Двигатель в этом случае называется – двигателем с фазным ротором. Для роторов эл.машин наиболее характерны такие повреждения, как выработка рабочей поверхности шейки и искривления вала, ослабления прессовки пакета сердечника;

обгорание поверхностей и “затяжка” стальных пластин ротора, в результате затирание его за статор, чрезмерный износ подшипников скольжения и вследствие этого “проседание” вала.

Выработку шеек вала не превышающею по глубине 4 -5 % его диаметра, устраняют проточкой на токарном станке. При большой выработке валы эл.машин ремонтируют, наплавляя на поврежденное место слой метала и протачивая наплавленный участок на токарном станке. Для наплавления металла на вал ротора применяют переносные электродуговые аппараты ВДУ-506МТУ3, ПДГ-270(SELMA) – полуавтомат.

Искривление вала обнаруживается путем проверки его биения в центрах токарного станка, запускают станок, а затем к вращающемуся валу подводят мел или цветной карандаш, закрепленный в суппорте станка: следы мела окажутся на выпуклой части вала. При помощи мела можно обнаружить биение, но нельзя определить его величину, которую определяет индикатор. К валу подносят наконечник индикатора, величину биения показывает его стрелка, отклоняясь по шкале, отградцифрованной в сотых или тысячных долях миллиметра. При искривлении вала до 0.1 мм на М длинны, но не более 0.2 мм на всю длину правка не обязательна на валу.

При искривлении вала до 0.3 % его длины правку производят без подогрева, а при искривлении более 0.3 % длины вал предварительно подогревают до 900 – 1000 `C и правят под прессом.



Правку вала производят гидравлическим прессом в два приема. Сначала выправляют вал до тех пор, пока его кривизна не станет менее 1 мм на 1 м длинны, а затем вал протачивают и полируют. При проточке допускается уменьшение диаметра вала не более чем на 6 % от его первоначальной величины. Ослабление прессовки пакета сердечника ротора повышает нагрев машины и увеличивает активность стали ротора. Для устранения этого дефекта при ремонте в зависимости от конструкции ротора подтягивают стяжные болты, забивают между клинья из текстолита или гетинакса промазанные клеем БФ – 2 , полностью пришлифовывают сердечник.

Обгоревшие поверхности активной стали ротора, вследствии чего отдельные пластины называются замкнутыми между собой, встречаются главным образом в машинах с подшипниками скольжения. Ротор с таким дефектом ремонтируют проточкой его сердечника на токарном станке или специальном приспособлении. После ремонта роторы эл.машин в сборе с вентиляторами и другими вращающими частями подвергают статистической или динамической балансировке на специальных балансировочных станках.

Т.к.вибрация, вызванная центробежными силами, достигающими при большом числе оборотов несбалансированного ротора, больших величин, может стать причиной разрушения фундамента и даже аварийного выхода машины из строя. Для статической балансировки служит станок, представляющий собой опорную конструкцию из профильной стали с установленными на ней призмами трапециевидной формы. Длинна призмы должна быть такой, чтобы ротор мог сделать на них не менее 2-х оборотов.



Практически ширину рабочей поверхности призмы балансировочных станков для балансировочных роторов массой до 1 т принимают 3 -5 мм. Рабочая поверхность призм должна быть хорошо отшлифована и способна, не деформируясь, выдерживать массу балансируемого ротора. Статическая балансировка ротора на станке производится в такой последовательности:

ротор укладывают шейками вала на рабочие поверхности призм. При этом ротор, перекатываясь на призмах, займет такое положение, при котором его наиболее тяжелая часть окажется внизу.

Для определения точки окружности в которой должен быть установлен балансирующий груз, ротор пять раз перекатывают и после каждой остановки отмечают мелом нижнюю “тяжелую” точку.

После этого на большой части окружности ротора окажется пять меловых черточек. Отметив середину расстояния между крайними меловыми отметками, определяют точку установки уравновешивающего груза: она находится в месте, диаметрально – противоположном средней “тяжелой” точке. В этой точке устанавливают уравновешивающий груз. Его массу подбирают опытным путем до тех пор, пока ротор не перестанет перекатываться, будучи установлен в любом произвольном положении. Правильно отбалансированный ротор после перекатывания в одном и другом направлениях должен во всех положениях находиться в состоянии равновесия.

При необходимости более полного обнаружения и устранения оставшегося дебаланса, окружность ротора делят на шесть равных частей. Затем укладывают ротор на призмы так, что – бы каждая из отметок поочередно находилась на горизонтальном диаметре,

в каждую из шести точек поочередно навешивают небольшие груза до тех пор, пока ротор не выйдет из состояния покоя. Массы грузов для каждой из шести точек будут различными. Наименьшая масса будет в “тяжелой” точке, наибольшая – в диаметрально–противоположной части ротора. При статическом методе балансировки уравновешивающий груз устанавливают только на одном торце ротора и таким образом устраняют статический дебаланс. Однако этот способ балансировки применим только для коротких роторов мелких и тихоходных машин. Для уравновешивания масс роторов крупных эл.машин (мощностью 50 кВт) с большими скоростями вращения (свыше 1000 об/мин.) применяют динамическую балансировку, при которой уравновешивающий груз устанавливают на обоих торцах ротора.

Это объяснено тем, что при вращении ротора с большой скоростью, каждый его торец имеет самостоятельное биение, вызванное несбалансированными массами.

Для динамической балансировки наиболее удобен станок резонансного типа, состоящий из двух сварных стоек (1) , опорных плит (9) , и балансировочных головок. Головки состоят из подшипников (8) , сегментов (6) , и могут быть закреплены неподвижно болтами (7) , либо свободно качаться на сегментах. Балансируемый ротор (2) приводится во вращение эл.двигателем (5) . Муфта расцепления и служит для отсоединения вращающего ротора от привода в момент балансировки.

Динамическая балансировка роторов состоит из двух операций:

а) измеряют первоначальную величину вибрации, дающую представление о размерах неуравновешенности масс ротора;

б) находят точку размещения и определения массы уравновешенности груза для одного из торцов ротора.

Для первой операции, головки станка закрепляют болтами (7) . Ротор при помощи эл.двигателя приводится во вращение, после чего привод отключают, расцепляя муфту и освобождают одну из головок станка.

Освобожденная головка под действием радиально – направленной центробежной силы небаланса раскачивается, что позволяет стрелочным индикаторам (3) измерять амплитуду колебания головки. Такое же измерение проводится для второй головки.

Вторую операцию выполняют методом “обхода груза” . Разделяют обе стороны ротора на шесть равных частей, в каждой точке поочередно закрепляют пробный груз, который должен быть меньше предполагаемого небаланса. Затем описанным выше способом измеряют колебание головки для каждого положения груза. Наилучшим местом размещения груза будет точка, в которой амплитуда колебаний будет минимальной.

Массу уравновешивающего груза Q получают из вращения:

Q = P * K 0 / K 0 – K мин

где Р – масса пробного груза;

К 0 – первоначальная амплитуда колебаний до обхода пробным грузом;

К мин – минимальная амплитуда колебаний при обходе пробным грузом.

Закончив балансировку одной стороны ротора, этим же способом балансируют другую половину. Балансировку считают удовлетворительной, если центробежная сила оставшейся неуравновешенности не превышает 3 % массы ротора.



 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з