Уравнения равновесия пространственной системы сил. Уравнения равновесия плоской и пространственной систем сил. Контрольные вопросы и задания

Т. о., для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы алгебраическая сумма проекций всех этих сил на каждую из трех любым образом выбранных координатных осей равнялась нулю и чтобы алгебраическая сумма их моментов относительно каждой из этих осей также равнялась нулю.

Условия (1.33) называются условиями равновесия произвольной пространственной системы сил в аналитической форме .

Условия равновесия пространственной системы параллельных сил. Если линии действия всех сил данной системы сил расположены в разных плоскостях и параллельны между собой, то такая система сил называется пространственной системой параллельных сил .

Пользуясь условиями равновесия (1.33) произвольной пространственной системы сил, можно найти условия равновесия пространственной системы параллельных сил. (Выведенные нами ранее условия равновесия для плоской и пространственной систем сходящихся сил, произвольной плоской системы сил и плоской системы параллельных сил также можно было бы получить, пользуясь условиями равновесия (1.33) произвольной пространственной системы сил).

Пусть на твердое тело действует пространственная система параллельных сил (рисунок 1.26). Так как выбор координатных осей произволен, то можно выбрать координатные оси так, чтобы ось z была параллельна силам. При таком выборе координатных осей проекции каждой из сил на оси х и у и их моменты относительно оси z будут равны нулю, и, следовательно, равенства , и удовлетворяются независимо от того, находится ли данная система сил в равновесии или нет, а поэтому перестают быть условиями равновесия. Поэтому система (1.33) даст только три условия равновесия:



Следовательно, для равновесия пространственной системы параллельных сил необходимо и достаточно, чтобы алгебраическая сумма проекций всех сил на ось, параллельную этим силам, равнялась нулю и чтобы алгебраическая сумма их моментов относительно каждой из двух координатных осей, перпендикулярных к этим силам, также равнялась нулю .

1. Выбрать тело (или точку), равновесие которого должно быть рассмотрено в данной задаче.

2. Освободить выбранное тело от связей и изобразить (расставить) все действующие на это тело (и только на это тело) активные силы и силы реакций отброшенных связей . Тело, освобожденное от связей, с приложенной к нему системой активных сил и сил реакций, следует изображать отдельно.

3. Составить уравнения равновесия . Для составления уравнений равновесия необходимо сначала выбрать оси координат. Этот выбор можно производить произвольно, но полученные уравнения равновесия будут решаться проще, если одну из осей направить перпендикулярно к линии действия какой-либо неизвестной силы реакции. Решение полученных уравнений равновесия следует, как правило, проводить до конца в общем виде (алгебраически). Тогда для искомых величин будут получаться формулы, позволяющие проанализировать найденные результаты; численные значения найденных величин подставляются только в окончательные формулы. Уравнения равновесия составляются при аналитическом методе решения задач на равновесие системы сходящихся сил. Однако, если число сходящихся сил, равновесие которых рассматривается, равно трем, то удобно применить геометрический метод решения этих задач. Решение в данном случае сводится к тому, что вместо уравнений равновесия всех действующих сил (активных и реакций связей) строится силовой треугольник, который на основании геометрического условия равновесия должен быть замкнут (начинать построение этого треугольника следует с заданной силы). Решая силовой треугольник, находим искомые величины.

Динамика

Для понимания раздела динамики необходимо знать следующие сведения. Из математики – скалярное произведение двух векторов, дифференциальные уравнения. Из физики – законы сохранения энергии, количества движения. Теория колебаний. Рекомендуется повторить эти темы.

Необходимые и достаточные условия равновесия любой системы сил выражаются равенствами (см. § 13). Но векторы R и равны только тогда, когда т. е. когда действующие силы, согласно формулам (49) и (50), будут удовлетворять условиям:

Таким образом, для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из трех координатных осей и суммы их моментов относительно этих осей были равны нулю.

Равенства (51) выражают одновременно условия равновесия твердого тела, находящегося под действием любой пространственной системы сил.

Если на тело кроме сил действует еще пара, заданная ее моментом , то при этом вид первых трех из условий (51) не изменится (сумма проекций сил пары на любую ось равна нулю), а последние три условия примут вид:

Случай параллельных сил. В случае, когда все действующие на тело силы параллельны друг другу, можно выбрать координатные оси так, что ось будет параллельна силам (рис. 96). Тогда проекции каждой из сил на оси и их моменты относительно оси z будут равны нулю и система (51) даст три условия равновесия:

Остальные равенства обратятся при этом в тождества вида

Следовательно, для равновесия пространственной системы параллельных сил необходимо и достаточно, чтобы сумма проекций всех сил на ось, параллельную силам, и суммы их моментов относительно двух других координатных осей были равны нулю.

Решение задач. Порядок решения задач здесь остается тем же, что и в случае плоской систсмьгсил. Установив, равновесие какого тела (объекта) рассматривается, надо изобразить все действующие на него внешние силы (и заданные, и реакции связей) и составить условия равновесия этих сил. Из полученных уравнений и определяются искомые величины.

Для получения более простых систем уравнений рекомендуется оси проводить так, чтобы они пересекали больше неизвестных сил или были им перпендикулярны (если это только излишне не усложняет вычисления проекций и моментов других сил).

Новым элементом в составлении уравнений является вычисление моментов сил относительно координатных осей.

В случаях, когда из общего чертежа трудно усмотреть, чему равен момент данной силы относительно какой-нибудь оси, рекомендуется изобразить на вспомогательном чертеже проекцию рассматриваемого тела (вместе с силой) на плоскость, перпендикулярную этой оси.

В тех случаях, когда при вычислении момента возникают затруднения в определении проекции силы на соответствующую плоскость или плеча этой проекции, рекомендуется разложить силу на две взаимно перпендикулярные составляющие (из которых одна параллельна какой-нибудь координатной оси), а затем воспользоваться теоремой Вариньона (см. задачу 36). Кроме того, можно вычислять моменты аналитически по формулам (47), как, например, в задаче 37.

Задача 39. На прямоугольной плите со сторонами а и b лежит груз. Центр тяжести плиты вместе с грузом находится в точке D с координатами (рис, 97). Один из рабочих удерживает плиту за угол А. В каких точках В я Е должны поддерживать плиту двое других рабочих, чтобы силы, прикладываемые каждым из удерживающих плиту, были одинаковы.

Решение. Рассматриваем равновесие плиты, которая является свободным телом, находящимся в равновесии под действием четырех параллельных сил где Р - сила тяжести. Составляем для этих сил условия равновесия (53), считая плиту горизонтальной и проводя оси так, как показано на рис. 97. Получим:

По условиям задачи должно быть Тогда из последнего уравнения Подставляя это значение Р в первые два уравнения, найдем окончательно

Решение возможно, когда При а при будет Когда точка D в центре плиты,

Задача 40. На горизонтальный вал, лежащий в подшипниках А и В (рис. 98) насажены перпендикулярно оси вала шкив радиусом см и барабан радиусом . Вал приводится во вращение ремнем, накинутым на шкив; при этом равномерно поднимается груз весом , привязанный к веревке, которая наматывается на барабан. Пренебрегая весом вала, барабана и шкива, определить реакции подшипников А и В и натяжение ведущей ветви ремня, если известно, что оно вдвое больше иатяжения ведомой ветви. Дано: см, см,

Решение. В рассматриваемой задаче при равномерном вращении вала действующие на него силы удовлетворяют условиям равновесия (51) (это будет доказано в § 136). Проведем координатные оси (рис. 98) и изобразим действующие на вал силы: натяжение F веревки, по модулю равное Р, натяжения ремня и составляющие реакций подшиппиков.

Для составления условий равновесия (51) вычисляем предварительно и вносим в таблицу значения проекций всех сил на координатные оси и их моментов относительно этих осей.

Теперь составляем условия равновесия (51); так как получим:

Из уравнений (III) и (IV) находим сразу, учитывая, что

Подставляя найденные значения в остальные уравнения, найдем;

И окончательно

Задача 41. Прямоугольная крышка весом , образующая с вертикалью угол закреплена на горизонтальной оси АВ в точке В цилиндрическим подшипником, а в точке А - подшипником с упором (рис. 99). Крышка удерживается в равновесии веревкой DE и оттягивается перекинутой через блок О иитью с грузом весом на конце (линия КО параллельна АВ). Дано: Определить натяжение веревки DE и реакции подшипников А и В.

Решение. Рассмотрим равновесие крышки. Проведем координатные оси, беря начало в точке В (при этом сила Т пересечет оси что упростит вид уравнений моментов).

Затем изобразим все действующие на крышку заданные силы и реакции связей: силу тяжести Р, приложенную в центре тяжести С крышки, силу Q, равную по модулю Q, реакцию Т веревки и реакции подшипников А и В (рис. 99; показанный пунктиром вектор М к данной задаче не относится). Для составления условий равновесия введем угол и обозначим Подсчет моментов некоторых сил пояснен на вспомогательных рис. 100, а, б.

На рис. 100, а показан вид в проекции на плоскость с положительного конца оси

Этот чертеж помогает вычислять моменты сил Р и Т относительно оси Из него видно, что проекции этих сил на плоскость (плоскость, перпендикулярную ) равны самим силам, а плечо силы Р относительно точки В равно ; плечо же силы Т относительно этой точки равно

На рис. 100, б показан вид в проекции на плоскость с положительного конца оси у.

Этот чертеж (вместе с рис. 100, а) помогает вычислять моменты сил Р и относительно оси у. Из него видно, что проекции этих сил на плоскость равны самим силам, а плечо силы Р относительно точки В равно плечо же силы Q относительно этой точки равно или , что видно из рис. 100, а.

Составляя с учетом сделанных пояснений условия равновесия (51) и полагая одновременно получим:

(I)

Учитывая, что найдем из уравнений (I), (IV), (V), (VI):

Подставляя эти значения в уравнения (II) и (III), получим:

Окончательно,

Задача 42. Решить задачу 41 для случая, когда на крышку дополнительно действует расположенная в ее плоскости пара с моментом поворот пары направлен (если смотреть на крышку сверху) против хода часовой стрелки.

Решение. В дополнение к действующим на крышку силам (см. рис. 99) изображаем момент М пары в виде вектора, перпендикулярного к крышке и приложенного в любой точке, например в точке А. Его проекции на координатные оси: . Тогда, составляя условия равновесия (52), найдем, что уравнения (I) - (IV) останутся такими же, как в предыдущей задаче, а последние два уравнения имеют вид:

Заметим, что этот же результат можно получить, не составляя уравнения в виде (52), а изобразив пару двумя силами, направленными, например, вдоль линий АВ и КО (при этом модули сил будут равны ), и пользуясь затем обычными условиями равновесия.

Решая уравнения (I) - (IV), (V), (VI), найдем результаты, аналогичные полученным в задаче 41, с той лишь разницей, что во все формулы вместо величины войдет . Окончательно получим:

Задача 43. Горизонтальный стержень АВ прикреплен к стене сферическим шарниром А и удерживается в положении, перпендикулярном стене, растяжками КЕ и CD, показанными на рис. 101, а. К концу В стержня подвешен груз весом . Определить реакцию шарнира А и натяжения растяжек, если Весом стержня пренебречь.

Решение. Рассмотрим равновесие стержня. На пего действуют сила Р и реакции Проведем координатные оси и составим условия равновесия (51). Для нахождения проекций и моментов силы разложим ее на составляющие . Тогда по теореме Вариньона , так как так как

Вычисление моментов сил относительно оси пояснено вспомогательным чертежом (рис. 101, б), на котором дан вид в проекции на плоскость

20. Условие равновесия пространственной системы сил:

21. Теорема о 3-х непараллельных силах: Линии действия трёх непараллельных взаимно уравновешивающихся сил, лежащих в одной плоскости, пересекаются в одной точке.

22. Статически определимые задачи – это задачи, которые можно решать методами статики твёрдого тела, т.е. задачи, в которых число неизвестных не превышает числа уравнений равновесия сил.

Статически не определимые – это системы, в которых число неизвестных величин превышает число независимых уравнений равновесия для данной системы сил

23. Уравнения равновесия плоской системы параллельных сил:

AB не параллельно F i

24. Конус и угол трения: Предельное положение активных сил, под действием которых может иметь место равенство, описывает конус трения c углом (φ).

Если активная сила проходит вне этого конуса, то тогда равновесие невозможно.

Угол φ называют углом трения.

25. Указать размерность коэффициентов трения: коэффициенты трения покоя и трения скольжения-безразмерные величины, коэффициенты трения качения и трения верчения имеют размерность длины(мм,см,м).м

26. Основные допущения, принимаемые при расчёте плоских статически опред.ферм: -стержни фермы считают невесомыми; -крепления стержней в узлах фермы-шарнирные; -внешняя нагрузка накладывается только в узлах фермы; -стержень попадает под связь.

27. Какая связь между стержнями и узлами статически определимой фермы?

S=2n-3 –простая статически определимая ферма, S-количество стержней, n-количество узлов,

если S<2n-3 –не жесткая ферма, равновесие возможно, если внешние силы будут одинаково соотноситься

S>2n-3 – статически не определимая ферма, имеет лишние связи, +расчёт деформации

28. Статически определимая ферма должна удовлетворять условию: S=2n-3; S-количество стержней, n-количество узлов.

29. Метод вырезания узлов: Этот метод состоит в том, что мысленно вырезают узлы фермы, прикладывают к ним соответствующие внешние силы и реакции стержней и составляют уравнения равновесия сил, приложенных к каждому узлу. Условно предполагают, что все стрежни растянуты(реакции стержней направлены от узлов).

30. Метод Риттера: Проводим секущую плоскость, рассекающую ферму на 2 части. Сечение должно начинаться и заканчиваться за пределами фермы. В качестве объекта равновесия можно выбирать любую часть. Сечение проходит по стержням, а не по узлам. Силы, приложенные к объекту равновесия, образуют произвольную систему сил, для которой можно составить 3 уравнения равновесия. Поэтому сечение проводим так, чтобы в него попало не более 3 стержней, усилия в которых неизвестны.



Особенностью метода Риттера является выбор формы уравнения таким образом, чтобы в каждое уравнение равновесия входила одна неизвестная величина. Для этого определяем положения точек Риттера, как точек пересечения линий действия двух неизвестных усилий и записываем уравнения моментов отн. этих точек.

Если точка Риттера лежит в бесконечности, то в качестве уравнения равновесия составляем уравнения проекций на ось, перпендикулярную этим стержням.

31. Точка Риттера- точка пересечения линий действия двух неизвестных усилий. Если точка Риттера лежит в бесконечности, то в качестве уравнения равновесия составляем уравнения проекций на ось, перпендикулярную этим стержням.

32. Центр тяжести объемной фигуры:

33. Центр тяжести плоской фигуры:

34. Центр тяжести стержневой конструкции:

35. Центр тяжести дуги:

36. Центр тяжести кругового сектора:

37. Центр тяжести конуса:

38. Центр тяжести полушара:

39. Метод отрицательных величин: Если твёрд.тело имеет полости, т.е. полости из которых вынута их масса, то мы мысленно заполняем эти полости до сплошного тела, и определяем центр тяжести фигуры, взяв вес, объём, площадь полостей со знаком «-».

40. 1-й инвариант: 1-м инвариантом системы сил называют главные вектор системы сил. Главный вектор системы сил не зависит от центра приведения R=∑ F i

41. 2-й инвариант: Скалярное произведение главного вектора на главный момент системы сил для любого центра приведения есть величина постоянная.

42. В каком случае система сил приводится к силовому винту? В случае, если главный вектор системы сил и её главный момент относительно центра приведения не равны нулю и не перпендикулярны между собой, задан. систему сил можно привести к силовому винту.

43. Уравнение центральной винтовой оси:

44. M x - yR z + zR y = pR x ,
M y - zR x + xR z = pR y ,
M z - xR y + yR x = pR z

45. Момент пары сил как вектор- этот вектор перпендикулярен плоскости действия пары и направлен в сторону, откуда видно вращение пары против хода часовой стрелки. По модулю векторный момент равен произведению одной из сил пары на плечо пары. Векторный момент пары явл. свободным вектором и может быть приложен к любой точке твердого тела.

46. Принцип освобождаемости от связей: Если связи отбрасываются, то их необходимо заменить силами реакций от связи.

47. Веревочный многоугольник- это построение графостатики, которым можно пользоваться для определения линия действия равнодействующей плоской системы сил для нахождения реакций опор.

48. Какая взаимосвязь между верёвочным и силовым многоугольником: Для нахождения неизвестных сил графически в силовом многоугольнике используем дополнительную точку О(полюс), в веревочном многоугольнике находим равнодействующую, перемещая которую в силовой многоугольник находим неизвестные силы

49. Условие равновесия систем пар сил: Для равновесия пар сил действующих на твердое тело необходимо и достаточно чтобы момент эквивалентных пар сил был равен нулю. Следствие: Чтобы уравновесить пару сил необходимо приложить уравновешивающую пару, т.е. пару сил можно уравновесить другой парой сил с равными модулями и противоположно направленными моментами.

Кинематика

1. Все способы задания движения точки:

естественный способ

координатный

радиус-векторный.

2. Как найти уравнение траектории движения точки при координатном способе задания её движения? Для того, чтобы получить уравнение траектории движение материальной точки, при координатном способе задания необходимо исключить параметр t из законов движения.

3. Ускорение точки при координ. способе задания движения:

над иксом 2 точки

над y 2 точки

4. Ускорение точки при векторном способе задания движения:

5. Ускорение точки при естественном способе задания движения:

= = * +v* ; a= + ; * ; v* .

6. Чему равно и как оно направлено нормальное ускорение – направлено по радиусу к центру,

Произвольную простран­ственную систему сил, как и плос­кую, можно привести к какому-нибудь центру О и заменить од­ной результирующей силой и парой с моментом . Рассуждая так, что для равновесия этой системы сил необходимо и достаточно, чтобы одновременно было R = 0 и M о = 0. Но векторы и могут обратиться в нуль только тогда, когда равны нулю все их проекции на оси координат, т. е. когда R x = R y = R z = 0 и M x = M y = M z = 0 или, когда дей­ствующие силы удовлетворяют условиям

ΣX i = 0; ΣM x (P i ) = 0;

ΣY i = 0; ΣM y (P i ) = 0;

ΣZ i = 0; ΣM z (P i ) = 0.

Таким образом, для равновесия пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил системы на каждую из координатных осей, а также суммы моментов всех сил системы относительно каждой из этих осей равнялись нулю.

В частных случаях системы сходящихся или параллельных сил эти уравнения будут линейно зависимы, и только три уравнения из шести будут линейно независимыми.

Например, уравнения равновесия системы сил, параллельных оси Oz , имеют вид:

ΣZ i = 0;

ΣM x (P i ) = 0;

ΣM y (P i ) = 0.

Задачи на равновесие тела под действием пространст­венной системы сил.

Принцип решения задач этого раздела остается тем же, что и для плоской системы сил. Установив, равновесие, какого тела будет рассматриваться, заменяют наложенные на тело связи их реакциями и составляют условия равновесия этого тела, рассма­тривая его как свободное. Из полученных уравнений определяются искомые величины.



Для получения более простых систем уравнений рекомендуется оси проводить так, чтобы они пересекали больше неизвестных сил или были к ним перпендикулярны (если это только излишне не усложняет вычисления проекций и моментов других сил).

Новым элементом в составлении уравнений является вычисление моментов сил относительно осей координат.

В случаях, когда из общего чертежа трудно усмотреть, чему равен момент данной силы относительно какой-нибудь оси, рекоменду­ется изобразить на вспомогательном чертеже проекцию рассматри­ваемого тела (вместе с силой) на плоскость, перпендикулярную к этой оси.

В тех случаях, когда при вычислении момента возникают затруд­нения в определении проекции силы на соответствующую плоскость или плеча этой проекции, реко­мендуется разложить силу на две взаимно перпендикулярные состав­ляющие (из которых одна парал­лельна какой-нибудь координат­ной оси), а затем воспользоваться теоремой Вариньона.

Пример 5. Рама АВ (рис.45) удерживается в равновесии шарниром А и стержнем ВС . На краю рамы находится груз весом Р . Опреде­лим реакции шарнира и усилие в стержне.

Рис.45

Рассматриваем равновесие рамы вместе с грузом.

Строим расчётную схему, изобразив раму свободным телом и показав все силы, действующие на неё: реакции связей и вес груза Р . Эти силы образуют систему сил, произвольно расположенных на плоскости.

Жела­тельно составить такие уравнения, чтобы в каждом было по одной неиз­вестной силе.

В нашей задаче это точка А , где приложены неизвестные и ; точка С , где пересекаются линии действия неизвестных сил и ; точка D – точка пересечения линий действия сил и . Со­ставим уравнение проекций сил на ось у (на ось х проектировать нельзя, т.к. она перпендикулярна прямой АС ).

И, прежде чем составлять уравнения, сделаем еще одно полезное заме­чание. Если на расчётной схеме имеется сила, расположенная так, что плечо её находится непросто, то при определении момента рекоменду­ется предварительно разложить вектор этой силы на две, более удобно направленные. В данной задаче разложим силу на две: и (рис.37) такие, что модули их

Составляем уравнения:

Из второго уравнения находим

Из третьего

И из первого

Так как получилось S <0, то стержень ВС будет сжат.

Пример 6. Прямоугольная полка весом Р удерживается в гори­зонтальном положении двумя стержнями СЕ и СD , прикреплён­ными к стене в точке Е . Стержни одинаковой длины, AB=2a , EO=a . Определим усилия в стержнях и ре­акции петель А и В .

Рис.46

Рассматриваем равновесие плиты. Строим расчётную схему (рис.46). Реакции петель принято показывать двумя силами перпенди­кулярными оси петли: .

Силы образуют систему сил, произвольно расположенных в про­странстве. Можем составить 6 уравнений. Неизвестных - тоже шесть.

Какие уравнения составлять – надо подумать. Желательно такие, чтобы они были попроще и чтобы в них было поменьше неизвестных.

Составим такие уравнения:

Из уравнения (1) получим: S 1 =S 2 . Тогда из (4): .

Из (3): Y A =Y B и, по (5), . Значит Из уравнения (6), т.к. S 1 =S 2 , следует Z A =Z B . Тогда по (2) Z A =Z B =P/4.

Из треугольника , где , следует ,

Поэтому Y A =Y B =0,25P, Z A =Z B 0,25P.

Для проверки решения можно составить ещё одно уравнение и по­смотреть, удовлетворяется ли оно при найденных значениях реакций:

Задача решена правильно.

Вопросы для самопроверки

Какая конструкция называется фермой?

Назовите основные составные элементы фермы.

Какой стержень фермы называется нулевым?

Сформулируйте леммы, определяющие нулевой стержень фермы.

В чем заключается сущность способа вырезания узлов?

На основании каких соображений без вычислений можно определить стержни пространственных ферм, в которых при заданной нагрузке усилия равны нулю?

В чем заключается сущность способа Риттера?

Каково соотношение между нормальной реакцией поверхности и силой нормального давления?

Что называется силой трения?

Запишите закон Амонтона-Кулона.

Сформулируйте основной закон трения. Что такое коэффициент трения, угол трения и от чего зависит их значение?

Брус находится в равновесии, опираясь на гладкую вертикальную стену и шероховатый горизонтальный пол; центр тяжести бруса находится в его середине. Можно ли определить направление полной реакции пола?

Назовите размерность коэффициента трения скольжения.

Что такое предельная сила трения скольжения.

Что характеризует конус трения?

Назовите причину появления момента трения качения.

Какова размерность коэффициента трения качения?

Приведите примеры устройств, в которых возникает трение верчения.

В чем заключается разница между силой сцепления и силой трения?

Что называют конусом сцепления?

Каковы возможные направления реакции шероховатой поверхности?

Что представляет собой область равновесия и каковы условия равновесия сил, приложенных к бруску, опирающемуся на две шероховатые поверхности?

Что называется моментом силы относительно точки? Какова размерность этой величины?

Как вычислить модуль момента силы относительно точки?

Сформулируйте теорему о моменте равнодействующей системы сходящихся сил.

Что называется моментом силы относительно оси?

Запишите формулу, связывающую момент силы относительно точки с моментом этой же силы относительно оси, проходящей через эту точку.

Как определяется момент силы относительно оси?

Почему при определении момента силы относительно оси нужно обязательно спроецировать силу на плоскость, перпендикулярную оси?

Каким образом нужно располо­жить ось, чтобы момент данной силы относительно этой оси равнялся нулю?

Приведите формулы для вычисления моментов силы относительно координатных осей.

Как направлен вектор момента силы относительно относительно точки?

Как определяется на плоскости момент силы относительно точки?

Какой площадью можно определить числовое значение момента силы относительно данной точки?

Изменяется ли момент силы относительно данной точки при переносе силы вдоль линии ее действия?

В каком случае момент силы относительно данной точки равен нулю?

Определите геометрическое место точек пространства, относительно которых моменты данной силы:

а) геометрически равны;

б) равны по модулю.

Как определяются числовое значение и знак момента силы относительно оси?

При каких условиях момент силы относительно оси равен нулю?

При каком направлении силы, приложенной к заданной точке, ее момент относительно данной оси наибольший?

Какая зависимость существует между моментом силы относительно точки и моментом той же силы относительно оси, проходящей через эту точку?

При каких условиях модуль момента силы относительно точки равен моменту той же силы относительно оси, проходящей через эту точку?

Каковы аналитические выражения моментов силы относительно координатных осей?

Чему равны главные моменты системы сил, произвольно расположенных в пространстве, относительно точки и относительно оси, проходящей через эту точку? Какова зависимость между ними?

Чему равен главный момент системы сил, лежащих в одной плоскости, относительно любой точки этой плоскости?

Чему равен главный момент сил, составляющих пару, относительно любой точки в пространстве?

Что называется главным моментом системы сил относительно заданного полюса?

Как формулируется лемма о параллельном переносе силы?

Сформулируйте теорему о приведении произвольной системы сил к главному вектору и главному моменту.

Запишите формулы для вычисления проекций главного момента на координатные оси.

Приведите векторную запись условий равновесия произвольной системы сил.

Запишите условия равновесия произвольной системы сил в проекциях на прямоугольные координатные оси.

Сколько независимых скалярных уравнений равновесия можно записать для пространственной системы параллельных сил?

Запишите уравнения равновесия для произвольной плоской системы сил.

При каком условии три непараллельные силы, приложенные к твердому телу, уравновешиваются?

Каково условие равновесия трех параллельных сил, приложенных к твердому телу?

Каковы возможные случаи приведения произвольно расположенных и параллельных сил в пространстве?

К какому простейшему виду можно привести систему сил, если известно, что главный момент этих сил относительно различных точек пространства:

а) имеет одно и то же значение не равное нулю;

б) равен нулю;

в) имеет различные значения и перпендикулярен главному вектору;

г) имеет различные значения и неперпендикулярен главному вектору.

Каковы условия и уравнения равновесия пространственной системы сходящихся, параллельных и произвольно расположенных сил и чем они отличаются от условий и уравнений равновесия такого же вида сил на плоскости?

Какие уравнения и сколько их можно составить для уравновешенной пространственной системы сходящихся сил?

Запишите систему уравнений равновесия пространственной системы сил?

Каковы геометрические и аналитические условия приведения пространственной системы сил к равнодействующей?

Сформулируйте теорему о моменте равнодействующей пространственной системы сил относительно точки и оси.

Составьте уравнения линии действия равнодействующей.

Какую прямую в пространстве называют центральной осью системы сил?

Выведите уравнения центральной оси системы сил?

Покажите, что две скрещивающиеся силы можно привести к силовому винту.

По какой формуле вычисляют наименьший главный момент заданной системы сил?

Запишите формулы для расчета главного вектора пространственной системы сходящихся сил?

Запишите формулы для расчета главного вектора пространственной системы произвольно расположенных сил?

Запишите формулу для расчета главного момента пространственной системы сил?

Какова зависимость главного момента системы сил в пространстве от расстояния центра приведения до центральной оси этой системы сил?

Относительно каких точек пространства главные моменты заданной системы сил имеют один и тот же модуль и составляют с главным вектором один и тот же угол?

Относительно каких точек пространства главные моменты системы сил геометрически равны между собой?

Каковы инварианты системы сил?

Каким условиям удовлетворяют задаваемые силы, приложенные к твердому телу с одной и двумя закрепленными точками, находящемуся в покое?

Будет ли в равновесии плоская система сил, для которой алгебраические суммы моментов относительно трех точек, расположенных на одной прямой, равны нулю?

Пусть для плоской системы сил суммы моментов относительно двух точек равны нулю. При каких дополнительных условиях система будет в равновесии?

Сформулируйте необходимые и достаточные условия равновесия плоской системы параллельных сил.

Что такое моментная точка?

Какие уравнения (и сколько) можно составить для уравновешенной произвольной плоской системы сил?

Какие уравнения и сколько их можно составить для уравновешенной пространственной системы параллельных сил?

Какие уравнения и сколько их можно составить для уравновешенной произвольной пространственной системы сил?

Как формулируется план решения задач статики на равновесие сил?

Как было выяснено в § 4.4, необходимые и достаточные условия равновесия пространственной системы сил, приложенных к твердому телу, можно записать в виде трех уравнений проекций (4.16) и трех моментов (4.17):

, , . (7.14)

Если тело полностью закреплено, то действующие на него силы находятся в равновесии и уравнения (7.13) и (7.14) служат для определения опорных реакций. Конечно, могут встретиться случаи, когда этих уравнений недостаточно для определения опорных реакций; такие статически неопределимые системы мы рассматривать не будем.

Для пространственной системы параллельных сил уравнения равновесия принимают вид (§ 4.4[‡]):

, , . (7.15)

Рассмотрим теперь случаи, когда тело закреплено лишь частично, т.е. связи, которые наложены на тело, не гарантируют равновесия тела. Можно указать четыре частных случая.

1. Твердое тело имеет одну неподвижную точку. Иначе говоря, оно прикреплено к неподвижной точке при помощи идеального сферического шарнира.

Поместим в эту точку начало неподвижной системы координат. Действие связи в точке А заменим реакцией; так как она неизвестна по модулю и по направлению, то мы ее представим в виде трех неизвестных составляющих , , , направленных соответственно вдоль осей , , .

Уравнения равновесия (7.13) и (7.14) в этом случае запишутся в виде:

1) ,

2) ,

3) ,

4) ,

5) ,

Последние три уравнения не содержат составляющих реакции, так как линия действия этой силы проходит через точку А . Следовательно, эти уравнения устанавливают зависимости между активными силами, необходимыми для равновесия тела, причем три первых уравнения могут быть использованы для определения составляющих реакции.

Таким образом, условием равновесия твердого тела, имеющего одну неподвижную точку, является равенство нулю каждой из алгебраических сумм моментов всех активных сил системы относительно трех осей, пересекающихся в неподвижной точке тела .

2. Тело имеет две неподвижные точки. Это, например, будет иметь место, если оно прикреплено к двум неподвижным точкам при помощи шарниров.



Выберем начало координат в точке А и направим ось вдоль линии, проходящей через точки А и В . Заменим действие связей реакциями, направив составляющие реакции вдоль координатных осей. Обозначим расстояние между точками А и В через а ; тогда уравнения равновесия (7.13) и (7.14) запишутся в следующем виде:

1) ,

2) ,

3) ,

4) ,

5) ,

Последнее уравнение не содержит сил реакции и устанавливает связь между активными силами, необходимую для равновесия тела. Следовательно, условием равновесия твердого тела, имеющего две неподвижные точки, является равенство нулю алгебраической суммы моментов всех активных сил, приложенных к телу, относительно оси, проходящей через неподвижные точки . Первые пять уравнений служат для определения неизвестных составляющих реакций , , , , , .

Заметим, что составляющие и не могут быть определены в отдельности. Из третьего уравнения определяется только сумма + и, следовательно, задача в отношении каждого из этих неизвестных для твердого тела является статически неопределимой. Однако, если в точке В находится не сферический, а цилиндрический шарнир (т.е. подшипник), не препятствующий продольному скольжению тела вдоль оси вращения, то и задача становится статически определимой.

Тело имеет неподвижную ось вращения, вдоль которой оно может скользить без трения. Это значит, что в точках А и В находятся цилиндрические шарниры (подшипники), причем составляющие их реакций вдоль оси вращения равны нулю. Следовательно, уравнения равновесия примут вид:

1) ,

2) ,

4) ,

5) ,

Два из уравнений (7.18), а именно, третье и шестое, накладывают ограничения на систему активных сил, а остальные уравнения служат для определения реакций.

Тело опирается в трех точках на гладкую поверхность, причем точки опоры не лежат на одной прямой. Обозначим эти точки через А , В и С и совместим с плоскостью АВС координатную плоскость Аху . Заменив действие связей вертикальными реакциями , и , запишем условия равновесия (7.14) в таком виде:

3) ,

4) ,

5) ,

Третье – пятое уравнения могут служить для определения неизвестных реакций, а первое, второе и шестое уравнения представляют собой условия, связывающие активные силы и необходимые для равновесия тела. Конечно, для равновесия тела необходимо выполнение условий , , , так как в точках опоры могут возникнуть только реакции принятого выше направления.

Если тело опирается на горизонтальную плоскость более чем в трех точках, то задача становится статически неопределимой, так как при этом реакций будет столько, сколько точек, а уравнений для определения реакций останется только три.

Задача 7.3. Найти главный вектор и главный момент системы сил, изображенной на рис. Силы приложены к вершинам куба и направлены вдоль его ребер, причем , . Длина ребра куба равна а .

Проекции главного вектора находим по формулам (4.4):

, , .

Его модуль равен . Направляющие косинусы будут

, ;

, ;

, .

Главный вектор изображен на рис.

,

а модуль главного момента по формуле (4.8)

Теперь определим направляющие косинусы главного момента:

, ;

, .

Главный момент изображен на рис. Угол между векторами и вычисляется по формуле (4.11) и

Границы искомой области найдем из условий:

,

.

Отсюда находим

,

.

На рис. искомая область, построенная при , заштрихована. При вся поверхность пластины будет безопасной.



 
Статьи по теме:
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з
Рыба на решетке - самое вкусное и ароматное блюдо
Особенность приготовления рыбы на мангале состоит в том, что независимо от того, как вы будете жарить рыбу — целиком или кусочками, кожу снимать не следует. Тушку рыбы нужно разделать очень аккуратно — старайтесь разрезать ее таким образом, что голова и х